IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i9p1654-d112340.html
   My bibliography  Save this article

The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System

Author

Listed:
  • Xueliang Yuan

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China
    These authors contributed equally to this work.)

  • Xiaoyu Zhang

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Jiaxin Liang

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China
    These authors contributed equally to this work.)

  • Qingsong Wang

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China
    These authors contributed equally to this work.)

  • Jian Zuo

    (School of Architecture & Built Environment, The University of Adelaide, Adelaide 5005, Australia)

Abstract

The rapid development of the building industry has become an important driving force for the fast growing energy use in China. The building industry contributed 26.4% of China’s GDP, and the building energy use accounted for 33% of the total energy use in China. Building energy conservation plays an important role in reaching the peak of carbon emissions before 2030, which was committed by the Chinese government in the Paris Agreement. Building energy conservation is a complex system. The guidance and support of government policies are one of the important issues. This research analyzed the institutional framework for building energy conservation in China. The roles and functions of each institution were critically reviewed. The policy system for building energy conservation was also analyzed, which included National Laws; Regulations of the State Council; Provisions of Ministries under the State Council; and National Standards, Plans and Programs. The suggestions for further improvements were drawn from the critical analysis such as defining clear and specific responsibility of management institutions, improving regulations and standard system, establishing the market leading mechanism, etc. This research draws an overall picture of the building energy conservation in China from the policy and institutional perspective. Findings provide a useful reference for increasing environmental performance in the building industry.

Suggested Citation

  • Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1654-:d:112340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/9/1654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/9/1654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo-Eun Choi & Ji-Hyun Shin & Jin-Hyun Lee & Sun-Sook Kim & Young-Hum Cho, 2017. "Development of Decision Support Process for Building Energy Conservation Measures and Economic Analysis," Energies, MDPI, vol. 10(3), pages 1-22, March.
    2. Vringer, Kees & van Middelkoop, Manon & Hoogervorst, Nico, 2016. "Saving energy is not easy," Energy Policy, Elsevier, vol. 93(C), pages 23-32.
    3. Crawford, Robert H. & Bartak, Erika L. & Stephan, André & Jensen, Christopher A., 2016. "Evaluating the life cycle energy benefits of energy efficiency regulations for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 435-451.
    4. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    5. Guo, Fei & Kurdgelashvili, Lado & Bengtsson, Magnus & Akenji, Lewis, 2016. "Analysis of achievable residential energy-saving potential and its implications for effective policy interventions: A study of Xiamen city in southern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 507-520.
    6. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    7. Li Zhao & Zhengnan Zhou, 2017. "Developing a Rating System for Building Energy Efficiency Based on In Situ Measurement in China," Sustainability, MDPI, vol. 9(2), pages 1-13, February.
    8. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    9. Shortall, Ruth & Kharrazi, Ali, 2017. "Cultural factors of sustainable energy development: A case study of geothermal energy in Iceland and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 101-109.
    10. Dixon, Robert K. & McGowan, Elizabeth & Onysko, Ganna & Scheer, Richard M., 2010. "US energy conservation and efficiency policies: Challenges and opportunities," Energy Policy, Elsevier, vol. 38(11), pages 6398-6408, November.
    11. Renn, Ortwin & Marshall, Jonathan Paul, 2016. "Coal, nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”," Energy Policy, Elsevier, vol. 99(C), pages 224-232.
    12. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, vol. 9(12), pages 1-20, November.
    13. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd. & Sahito, Anwer Ali & Nallagownden, Perumal & Elamvazuthi, Irraivan & Shaikh, M.S., 2017. "Building energy for sustainable development in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1392-1403.
    14. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    15. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    16. Stephan, André & Crawford, Robert H., 2016. "The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings," Energy, Elsevier, vol. 116(P1), pages 1158-1171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinan Li & Neng Zhu & Beibei Qin, 2019. "What Affects the Progress and Transformation of New Residential Building Energy Efficiency Promotion in China: Stakeholders’ Perceptions," Energies, MDPI, vol. 12(6), pages 1-41, March.
    2. Jiayi Jia & Zhenyu Huang & Jianying Deng & Fang Hu & Lin Li, 2022. "Government Performance Evaluation in the Context of Carbon Neutrality: Energy-Saving of New Residential Building Projects," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    3. Xia Li & Timothy Simcoe, 2021. "Competing or complementary labels? Estimating spillovers in Chinese green building certification," Strategic Management Journal, Wiley Blackwell, vol. 42(13), pages 2451-2476, December.
    4. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    2. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Wang, Jianming & Li, Yongqiang & He, Zhengxia & Gao, Jian & Wang, Jianguo, 2022. "Scale framing, benefit framing and their interaction effects on energy-saving behaviors: Evidence from urban residents of China," Energy Policy, Elsevier, vol. 166(C).
    4. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    5. Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    6. Copiello, Sergio & Gabrielli, Laura & Bonifaci, Pietro, 2017. "Evaluation of energy retrofit in buildings under conditions of uncertainty: The prominence of the discount rate," Energy, Elsevier, vol. 137(C), pages 104-117.
    7. Enongene, K.E. & Murray, P. & Holland, J. & Abanda, F.H., 2017. "Energy savings and economic benefits of transition towards efficient lighting in residential buildings in Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 731-742.
    8. Xie, Peijun & Jamaani, Fouad, 2022. "Does green innovation, energy productivity and environmental taxes limit carbon emissions in developed economies: Implications for sustainable development," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 66-78.
    9. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    10. Yinan Li & Neng Zhu & Beibei Qin, 2019. "What Affects the Progress and Transformation of New Residential Building Energy Efficiency Promotion in China: Stakeholders’ Perceptions," Energies, MDPI, vol. 12(6), pages 1-41, March.
    11. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
    12. Carine Lausselet & Linda Ager‐Wick Ellingsen & Anders Hammer Strømman & Helge Brattebø, 2020. "A life‐cycle assessment model for zero emission neighborhoods," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 500-516, June.
    13. Jacek Brożyna & Wadim Strielkowski & Alena Fomina & Natalya Nikitina, 2020. "Renewable Energy and EU 2020 Target for Energy Efficiency in the Czech Republic and Slovakia," Energies, MDPI, vol. 13(4), pages 1-20, February.
    14. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    15. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    16. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    17. Abrardi, Laura & Cambini, Carlo, 2015. "Tariff regulation with energy efficiency goals," Energy Economics, Elsevier, vol. 49(C), pages 122-131.
    18. William Hongsong Wang & Vicente Moreno-Casas & Jesús Huerta de Soto, 2021. "A Free-Market Environmentalist Transition toward Renewable Energy: The Cases of Germany, Denmark, and the United Kingdom," Energies, MDPI, vol. 14(15), pages 1-27, July.
    19. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    20. Rentier, Gerrit & Lelieveldt, Herman & Kramer, Gert Jan, 2019. "Varieties of coal-fired power phase-out across Europe," Energy Policy, Elsevier, vol. 132(C), pages 620-632.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1654-:d:112340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.