IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v78y2017icp731-742.html
   My bibliography  Save this article

Energy savings and economic benefits of transition towards efficient lighting in residential buildings in Cameroon

Author

Listed:
  • Enongene, K.E.
  • Murray, P.
  • Holland, J.
  • Abanda, F.H.

Abstract

Lighting accounts for over 20% of electricity use in the residential sector of Cameroon. Due to the unreliable and inadequate energy supply in the country, there is a need for the efficient utilization of the available energy. This paper presents the current different technologies used for artificial lighting including the economic and environmental benefits associated with a switch from incandescent lighting to compact fluorescent lamp (CFL) and light emitting diode (LED) in residential dwellings in Buea, Cameroon. The study employed a survey of 100 residential dwellings in Buea. Results of the survey revealed that artificial lighting in dwellings is achieved through the use of the following technologies: incandescent lamps, CFLs and fluorescent tubes. The economic assessment for the substitution of incandescent lamps with CFL and LED considering an average daily lighting duration of six hours was also conducted using the net present value (NPV), benefit cost ratio (BCR), the simple payback period (PBP) and a life cycle cost analysis (LCC). The economic assessment revealed an NPV that ranges from $47 to $282.02, a BCR of 1.84 and a PBP of 0.17 year for the substitution of current incandescent lamps in dwellings with CFL while the substitution of incandescent lamps with LED revealed an NPV of the range $89.14 to $370, a BCR of 3.18 and a PBP of 1.92 years. The LED and incandescent technologies emerged with the lowest and highest LCC respectively. Substituting incandescent lamps with CFL and LED results in a reduction in lighting related greenhouse gas (GHG) emissions from dwellings by 66.6% and 83.3% respectively. From the results, a transition towards efficient lighting in the residential sector of Cameroon possesses great economic and environmental benefits. There is need for the government of Cameroon to expedite the uptake of LED through the formulation and implementation of favourable policies.

Suggested Citation

  • Enongene, K.E. & Murray, P. & Holland, J. & Abanda, F.H., 2017. "Energy savings and economic benefits of transition towards efficient lighting in residential buildings in Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 731-742.
  • Handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:731-742
    DOI: 10.1016/j.rser.2017.04.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117305683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de la Rue du Can, Stephane & Price, Lynn & Zwickel, Timm, 2015. "Understanding the full climate change impact of energy consumption and mitigation at the end-use level: A proposed methodology for allocating indirect carbon dioxide emissions," Applied Energy, Elsevier, vol. 159(C), pages 548-559.
    2. Zhou, Hui & Bukenya, James O., 2016. "Information inefficiency and willingness-to-pay for energy-efficient technology: A stated preference approach for China Energy Label," Energy Policy, Elsevier, vol. 91(C), pages 12-21.
    3. Min, Jihoon & Azevedo, Inês L. & Michalek, Jeremy & de Bruin, Wändi Bruine, 2014. "Labeling energy cost on light bulbs lowers implicit discount rates," Ecological Economics, Elsevier, vol. 97(C), pages 42-50.
    4. Scheepmaker, Gerben M. & Goverde, Rob M.P. & Kroon, Leo G., 2017. "Review of energy-efficient train control and timetabling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 355-376.
    5. Abanda, F.H., 2012. "Renewable energy sources in Cameroon: Potentials, benefits and enabling environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4557-4562.
    6. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    7. Aman, M.M. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A., 2013. "Analysis of the performance of domestic lighting lamps," Energy Policy, Elsevier, vol. 52(C), pages 482-500.
    8. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    9. Zografakis, Nikolaos & Karyotakis, Konstantinos & Tsagarakis, Konstantinos P., 2012. "Implementation conditions for energy saving technologies and practices in office buildings: Part 1. Lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4165-4174.
    10. Wada, Kenichi & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi, 2012. "Energy efficiency opportunities in the residential sector and their feasibility," Energy, Elsevier, vol. 48(1), pages 5-10.
    11. Nfah, E.M. & Ngundam, J.M., 2009. "Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon," Renewable Energy, Elsevier, vol. 34(6), pages 1445-1450.
    12. Raatikainen, Mika & Skön, Jukka-Pekka & Leiviskä, Kauko & Kolehmainen, Mikko, 2016. "Intelligent analysis of energy consumption in school buildings," Applied Energy, Elsevier, vol. 165(C), pages 416-429.
    13. Li, Cheng & Hong, Tianzhen & Yan, Da, 2014. "An insight into actual energy use and its drivers in high-performance buildings," Applied Energy, Elsevier, vol. 131(C), pages 394-410.
    14. Min, Guan Fu & Mills, Evan & Zhang, Qin, 1997. "Energy efficient lighting in China : Problems and prospects," Energy Policy, Elsevier, vol. 25(1), pages 77-83, January.
    15. al Irsyad, M Indra & Nepal, Rabindra, 2016. "A survey based approach to estimating the benefits of energy efficiency improvements in street lighting systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1569-1577.
    16. Pode, Ramchandra, 2010. "Solution to enhance the acceptability of solar-powered LED lighting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1096-1103, April.
    17. Ian W.H. Parry & Mr. Victor Mylonas & Nate Vernon, 2017. "Reforming Energy Policy in India: Assessing the Options," IMF Working Papers 2017/103, International Monetary Fund.
    18. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    19. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    20. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    21. Menanteau, Philippe & Lefebvre, Herve, 2000. "Competing technologies and the diffusion of innovations: the emergence of energy-efficient lamps in the residential sector," Research Policy, Elsevier, vol. 29(3), pages 375-389, March.
    22. Andrea L. Hicks & Thomas L. Theis & Moira L. Zellner, 2015. "Emergent Effects of Residential Lighting Choices: Prospects for Energy Savings," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 285-295, April.
    23. Batih, Hakimul & Sorapipatana, Chumnong, 2016. "Characteristics of urban households׳ electrical energy consumption in Indonesia and its saving potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1160-1173.
    24. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    25. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    2. Calvin Nsangou, Jean & Kenfack, Joseph & Nzotcha, Urbain & Tamo, Thomas Tatietse, 2020. "Assessment of the potential for electricity savings in households in Cameroon: A stochastic frontier approach," Energy, Elsevier, vol. 211(C).
    3. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    4. Nie, Hongguang & Zhou, Ting & Lu, Haiyan & Huang, Shupeng, 2021. "Evaluation of the efficiency of Chinese energy-saving household appliance subsidy policy: An economic benefit perspective," Energy Policy, Elsevier, vol. 149(C).
    5. Seongwon Seo & Greg Foliente, 2021. "Carbon Footprint Reduction through Residential Building Stock Retrofit: A Metro Melbourne Suburb Case Study," Energies, MDPI, vol. 14(20), pages 1-28, October.
    6. Jiaying Teng & Pengying Wang & Xiaofei Mu & Wan Wang, 2021. "Energy-saving performance analysis of green technology implications for decision-makers of multi-story buildings," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15639-15665, October.
    7. Nie, Hongguang & Kemp, René & Xu, Jin-Hua & Vasseur, Véronique & Fan, Ying, 2020. "Split incentive effects on the adoption of technical and behavioral energy-saving measures in the household sector in Western Europe," Energy Policy, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    2. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    3. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    4. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    5. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    6. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
    8. Wang, Jianming & Li, Yongqiang & He, Zhengxia & Gao, Jian & Wang, Jianguo, 2022. "Scale framing, benefit framing and their interaction effects on energy-saving behaviors: Evidence from urban residents of China," Energy Policy, Elsevier, vol. 166(C).
    9. Mills, Bradford & Schleich, Joachim, 2014. "Household transitions to energy efficient lighting," Energy Economics, Elsevier, vol. 46(C), pages 151-160.
    10. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    11. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Blasch, Julia & Filippini, Massimo & Kumar, Nilkanth, 2019. "Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances," Resource and Energy Economics, Elsevier, vol. 56(C), pages 39-58.
    13. Xueliang Yuan & Xiaoyu Zhang & Jiaxin Liang & Qingsong Wang & Jian Zuo, 2017. "The Development of Building Energy Conservation in China: A Review and Critical Assessment from the Perspective of Policy and Institutional System," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    14. Gallo, Michela & Del Borghi, Adriana & Strazza, Carlo & Parodi, Lara & Arcioni, Livia & Proietti, Stefania, 2016. "Opportunities and criticisms of voluntary emission reduction projects developed by Public Administrations: Analysis of 143 case studies implemented in Italy," Applied Energy, Elsevier, vol. 179(C), pages 1269-1282.
    15. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    16. Xuan Liu & Qiancheng Wang & Hsi-Hsien Wei & Hung-Lin Chi & Yaotian Ma & Izzy Yi Jian, 2020. "Psychological and Demographic Factors Affecting Household Energy-Saving Intentions: A TPB-Based Study in Northwest China," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    17. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    18. Yinan Li & Neng Zhu & Beibei Qin, 2019. "What Affects the Progress and Transformation of New Residential Building Energy Efficiency Promotion in China: Stakeholders’ Perceptions," Energies, MDPI, vol. 12(6), pages 1-41, March.
    19. Franceschini, Simone & Borup, Mads & Rosales-Carreón, Jesús, 2018. "Future indoor light and associated energy consumption based on professionals' visions: A practice- and network-oriented analysis," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 1-11.
    20. Burlinson, Andrew & Giulietti, Monica & Battisti, Giuliana, 2018. "Technology adoption, consumer inattention and heuristic decision-making: Evidence from a UK district heating scheme," Research Policy, Elsevier, vol. 47(10), pages 1873-1886.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:731-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.