IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i7p1264-d105079.html
   My bibliography  Save this article

Entropy Analysis of the Coupled Human–Earth System: Implications for Sustainable Development

Author

Listed:
  • Weifang Shi

    (College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

Finding the basic physical foundation contributing to sustainable development is significantly useful in seeking ways to build an enduring human future. This paper introduces the dissipative structure theory to analyze the entropy budgets of the whole coupled human–Earth system and the key processes of the subsystems, and then presents the formulas to calculate these entropy budgets. The results show that the total net negative entropy of the coupled human–Earth system from exchange with space is sufficient, but only about 0.0042% of it is available for sustaining the life activities of the whole coupled system and the quantity of this portion is also not more than sufficient compared with the requirement of human life activities. In addition, the rate of negative entropy consumption by human subsystem from fossil fuels for sustaining modern civilization is too large, nearly a half of the negative entropy rate obtained by photosynthesis on the Earth, which indicates that entirely substituting biomass fuels for fossil fuels may be infeasible. The strategies for sustaining human life activities and modern civilization are proposed in the study, which would provide valuable information for humans to realize sustainable development.

Suggested Citation

  • Weifang Shi, 2017. "Entropy Analysis of the Coupled Human–Earth System: Implications for Sustainable Development," Sustainability, MDPI, vol. 9(7), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1264-:d:105079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/7/1264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/7/1264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sneddon, Chris & Howarth, Richard B. & Norgaard, Richard B., 2006. "Sustainable development in a post-Brundtland world," Ecological Economics, Elsevier, vol. 57(2), pages 253-268, May.
    2. Lin, Henry, 2015. "Thermodynamic entropy fluxes reflect ecosystem characteristics and succession," Ecological Modelling, Elsevier, vol. 298(C), pages 75-86.
    3. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    4. Nick Wills-Johnson, 2010. "Lessons for sustainability from the world’s most sustainable culture," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(6), pages 909-925, December.
    5. Aoki, Ichiro, 2008. "Entropy law in aquatic communities and the general entropy principle for the development of living systems," Ecological Modelling, Elsevier, vol. 215(1), pages 89-92.
    6. Kazim, Ayoub, 2010. "Strategy for a sustainable development in the UAE through hydrogen energy," Renewable Energy, Elsevier, vol. 35(10), pages 2257-2269.
    7. David Bristow & Christopher Kennedy, 2015. "Why Do Cities Grow? Insights from Nonequilibrium Thermodynamics at the Urban and Global Scales," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 211-221, April.
    8. R. Feistel, 2011. "Radiative entropy balance and vertical stability of a gray atmosphere," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 82(3), pages 197-206, August.
    9. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
    10. Midilli, Adnan & Dincer, Ibrahim & Ay, Murat, 2006. "Green energy strategies for sustainable development," Energy Policy, Elsevier, vol. 34(18), pages 3623-3633, December.
    11. Winkler, Wolfgang, 2011. "Sustainable product development based on second law of thermodynamics," Applied Energy, Elsevier, vol. 88(9), pages 3248-3256.
    12. Mekhilef, S. & Faramarzi, S.Z. & Saidur, R. & Salam, Zainal, 2013. "The application of solar technologies for sustainable development of agricultural sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 583-594.
    13. Krysiak, Frank C., 2006. "Entropy, limits to growth, and the prospects for weak sustainability," Ecological Economics, Elsevier, vol. 58(1), pages 182-191, June.
    14. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fumin Deng & Canmian Liu & Xuedong Liang, 2017. "Measurement of Regional Agricultural Sustainable Development System Based on Dissipative Structure Theory: A Case Study in Sichuan Province, China," Sustainability, MDPI, vol. 9(11), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damien Bazin & Emna Omri & Nouri Chtourou, 2015. "Solar Thermal Energy for Sustainable Development in Tunisia," Post-Print halshs-01070616, HAL.
    2. Omri, Emna & Chtourou, Nouri & Bazin, Damien, 2015. "Solar thermal energy for sustainable development in Tunisia: The case of the PROSOL project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1312-1323.
    3. Redha, Adel Mohammed & Dincer, Ibrahim & Gadalla, Mohamed, 2011. "Thermodynamic performance assessment of wind energy systems: An application," Energy, Elsevier, vol. 36(7), pages 4002-4010.
    4. Most Asikha Aktar & Mukaramah Binti & Md Mahmudul Alam, 2021. "Green Path Development and Green Regional Restructuring for Sustainable Development," Post-Print hal-03520061, HAL.
    5. Gaigalis, Vygandas & Skema, Romualdas, 2016. "A review on solid biofuel usage in Lithuania after the decommission of Ignalina NPP and compliance with the EU policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 974-988.
    6. Karbassi, A.R. & Abduli, M.A. & Mahin Abdollahzadeh, E., 2007. "Sustainability of energy production and use in Iran," Energy Policy, Elsevier, vol. 35(10), pages 5171-5180, October.
    7. Anabela Botelho & Lina Sofia Lourenço-Gomes & Lígia Costa Pinto & Sara Sousa & Marieta Valente, 2015. "Annoyance and welfare costs from the presence of renewable energy power plants: an application of the contingent valuation method," NIMA Working Papers 60, Núcleo de Investigação em Microeconomia Aplicada (NIMA), Universidade do Minho.
    8. Gaigalis, Vygandas & Skema, Romualdas, 2015. "Analysis of the fuel and energy transition in Lithuanian industry and its sustainable development in 2005–2013 in compliance with the EU policy and strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 265-279.
    9. Aydin, Hakan, 2013. "Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle," Energy, Elsevier, vol. 57(C), pages 766-774.
    10. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    11. Most. Asikha Aktar & Mukaramah Binti Harun & Md. Mahmudul Alam, 2020. "Green Energy and Sustainable Development," Post-Print hal-03518462, HAL.
    12. Agnieszka Wałachowska & Aranka Ignasiak-Szulc, 2021. "Comparison of Renewable Energy Sources in ‘New’ EU Member States in the Context of National Energy Transformations," Energies, MDPI, vol. 14(23), pages 1-17, November.
    13. Aydın, Hakan & Turan, Önder & Karakoç, T. Hikmet & Midilli, Adnan, 2013. "Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight," Energy, Elsevier, vol. 58(C), pages 550-560.
    14. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos & Tsialis, Panagiotis & Ioannou, Konstantinos, 2018. "Electricity consumption and RES plants in Greece: Typologies of regional units," Renewable Energy, Elsevier, vol. 127(C), pages 134-144.
    15. Piotr Siemiątkowski & Patryk Tomaszewski & Joanna Marszałek-Kawa & Janusz Gierszewski, 2020. "The Financing of Renewable Energy Sources and the Level of Sustainable Development of Poland’s Provinces in the Area of Environmental Order," Energies, MDPI, vol. 13(21), pages 1-19, October.
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Pogany, Peter, 2013. "Thermodynamic Isolation and the New World Order," MPRA Paper 49924, University Library of Munich, Germany.
    18. Keun-Seob Choi & Jeong-Dong Lee & Chulwoo Baek, 2016. "Growth of De Alio and De Novo firms in the new and renewable energy industry," Industry and Innovation, Taylor & Francis Journals, vol. 23(4), pages 295-312, May.
    19. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1264-:d:105079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.