IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p2047-d118047.html
   My bibliography  Save this article

Measurement of Regional Agricultural Sustainable Development System Based on Dissipative Structure Theory: A Case Study in Sichuan Province, China

Author

Listed:
  • Fumin Deng

    (The Economy and Enterprise Development Institute, Sichuan University, Chengdu 610065, China)

  • Canmian Liu

    (The Economy and Enterprise Development Institute, Sichuan University, Chengdu 610065, China)

  • Xuedong Liang

    (The Economy and Enterprise Development Institute, Sichuan University, Chengdu 610065, China)

Abstract

Aiming at the sustainable development issue of agriculture, the regional agricultural sustainable development system is regarded as a complex giant dissipative system in this paper by using the theory of dissipative structure. In order to effectively measure the coordinated development status and orderly evolution trend of the system, the more comprehensive and scientific index system was constructed from the framework of economy, society, technology, resource and environment (ESTRE). The measurement model of the system was constructed by using the method of information entropy, and an empirical analysis of Sichuan province from 2005 to 2015 was conducted. The results show that with the advancement of the years, the agricultural sustainable development system in Sichuan province is evolving in a more orderly and coordinated direction. The measurement results are in agreement with the actual situation and verify the effectiveness of the system measurement model in the regional agricultural sustainable development measure.

Suggested Citation

  • Fumin Deng & Canmian Liu & Xuedong Liang, 2017. "Measurement of Regional Agricultural Sustainable Development System Based on Dissipative Structure Theory: A Case Study in Sichuan Province, China," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2047-:d:118047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/2047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/2047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vlontzos, George & Niavis, Spyros & Manos, Basil, 2014. "A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 91-96.
    2. Weifang Shi, 2017. "Entropy Analysis of the Coupled Human–Earth System: Implications for Sustainable Development," Sustainability, MDPI, vol. 9(7), pages 1-14, July.
    3. Byomkesh Talukder & Alison Blay-Palmer & Keith W. Hipel & Gary W. VanLoon, 2017. "Elimination Method of Multi-Criteria Decision Analysis (MCDA): A Simple Methodological Approach for Assessing Agricultural Sustainability," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    4. Ghisellini, Patrizia & Zucaro, Amalia & Viglia, Silvio & Ulgiati, Sergio, 2014. "Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis," Ecological Modelling, Elsevier, vol. 271(C), pages 132-148.
    5. Gustavson, Kent R. & Lonergan, Stephen C. & Ruitenbeek, H. Jack, 1999. "Selection and modeling of sustainable development indicators: a case study of the Fraser River Basin, British Columbia," Ecological Economics, Elsevier, vol. 28(1), pages 117-132, January.
    6. Rasul, Golam & Thapa, Gopal B., 2004. "Sustainability of ecological and conventional agricultural systems in Bangladesh: an assessment based on environmental, economic and social perspectives," Agricultural Systems, Elsevier, vol. 79(3), pages 327-351, March.
    7. Dong, Fengxia & Mitchell, Paul D. & Colquhoun, Jed, 2013. "Measuring Farm Sustainability Using Data Envelope Analysis with Principal Components: The Case of the Wisconsin Cranberry," Staff Paper Series 568, University of Wisconsin, Agricultural and Applied Economics.
    8. Lu, Bing-fu & Han, Wei-ping, 2009. "Sustainable development level in rural China based on osculating value method," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 1(02), pages 1-4, February.
    9. Walters, Jeffrey P. & Archer, David W. & Sassenrath, Gretchen F. & Hendrickson, John R. & Hanson, Jon D. & Halloran, John M. & Vadas, Peter & Alarcon, Vladimir J., 2016. "Exploring agricultural production systems and their fundamental components with system dynamics modelling," Ecological Modelling, Elsevier, vol. 333(C), pages 51-65.
    10. Gómez-Limón, José A. & Sanchez-Fernandez, Gabriela, 2010. "Empirical evaluation of agricultural sustainability using composite indicators," Ecological Economics, Elsevier, vol. 69(5), pages 1062-1075, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Wang & Xianli Zhao & Qunxi Gong & Zhigeng Ji, 2019. "Measurement of Regional Green Economy Sustainable Development Ability Based on Entropy Weight-Topsis-Coupling Coordination Degree—A Case Study in Shandong Province, China," Sustainability, MDPI, vol. 11(1), pages 1-18, January.
    2. Xiangyu Wu & Yunlong Ding, 2018. "The Service Supply Effect of Cooperatives under Economic Transformation: A Demand-Supply Perspective," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    3. Minjie Li & Jian Wang & Yihui Chen, 2019. "Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    4. Xuedong Liang & Ruyun Zhang & Canmian Liu & Haiyue Liu, 2018. "Quantitative Measurement of the Sustainable Water Resource Development System in China Inspired by Dissipative Structure Theory," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    5. He, Xiaolong & Wang, Chaoyi & Yang, Xiaowei & Lai, Zhoujing, 2021. "Do enterprise ownership structures affect financial performance in China's power and gas industries?," Utilities Policy, Elsevier, vol. 73(C).
    6. Xinkui Wang & Zengchuan Dong & Wei Xu & Yun Luo & Tao Zhou & Wenzhuo Wang, 2019. "Study on Spatial and Temporal Distribution Characteristics of Coordinated Development Degree among Regional Water Resources, Social Economy, and Ecological Environment Systems," IJERPH, MDPI, vol. 16(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Stylianou & Despina Sdrali & Constantinos D. Apostolopoulos, 2020. "Integrated Sustainability Assessment of Divergent Mediterranean Farming Systems: Cyprus as a Case Study," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    2. Jindřich Špička & Tomáš Vintr & Renata Aulová & Jana Macháčková, 2020. "Trade-off between the economic and environmental sustainability in Czech dual farm structure," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(6), pages 243-250.
    3. Anna Gaviglio & Mattia Bertocchi & Maria Elena Marescotti & Eugenio Demartini & Alberto Pirani, 2016. "The social pillar of sustainability: a quantitative approach at the farm level," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-19, December.
    4. Shamsheer Haq & Ismet Boz, 2020. "Measuring environmental, economic, and social sustainability index of tea farms in Rize Province, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2545-2567, March.
    5. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.
    6. M. Kumaran & M. Sundaram & Shijo Mathew & P. R. Anand & T. K. Ghoshal & P. Kumararaja & R. Anandaraja & Shyne Anand & K. K. Vijayan, 2021. "Is Pacific white shrimp (Penaeus vannamei) farming in India sustainable? A multidimensional indicators-based assessment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6466-6480, April.
    7. A. Suresh & P. Krishnan & Girish K. Jha & A. Amarender Reddy, 2022. "Agricultural Sustainability and Its Trends in India: A Macro-Level Index-Based Empirical Evaluation," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    8. Binder, C.R. & Schmid, A. & Steinberger, J.K., 2012. "Sustainability solution space of the Swiss milk value added chain," Ecological Economics, Elsevier, vol. 83(C), pages 210-220.
    9. Sipan Li & Qunxi Gong & Shaolei Yang, 2019. "A Sustainable, Regional Agricultural Development Measurement System Based on Dissipative Structure Theory and the Entropy Weight Method: A Case Study in Chengdu, China," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    10. Khosravi, Faramarz & Izbirak, Gokhan & Shavarani, Seyed Mahdi, 2021. "Application of bootstrap re-sampling method in statistical measurement of sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    11. Luong Van Pham & Carl Smith, 2014. "Drivers of agricultural sustainability in developing countries: a review," Environment Systems and Decisions, Springer, vol. 34(2), pages 326-341, June.
    12. Abdallah Alaoui & Lúcia Barão & Carla S. S. Ferreira & Rudi Hessel, 2022. "An Overview of Sustainability Assessment Frameworks in Agriculture," Land, MDPI, vol. 11(4), pages 1-26, April.
    13. Chang Liu & Zhanyu Zhang & Shuya Liu & Qiaoyuan Liu & Baoping Feng & Julia Tanzer, 2019. "Evaluating Agricultural Sustainability Based on the Water–Energy–Food Nexus in the Chenmengquan Irrigation District of China," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    14. Stergiou, Eirini, 2022. "Environmental Efficiency of European Industries across Sectors and Countries," MPRA Paper 114635, University Library of Munich, Germany.
    15. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    16. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    17. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    18. Ana Paula Coelho Clauberg & Renato de Mello & Flávio José Simioni & Simone Sehnem, 2021. "System for assessing the sustainability conditions of small hydro plants by fuzzy logic," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 300-317, March.
    19. Ali, Muhammad Fadzli & Akber, Md. Ali & Smith, Carl & Aziz, Ammar Abdul, 2021. "The dynamics of rubber production in Malaysia: Potential impacts, challenges and proposed interventions," Forest Policy and Economics, Elsevier, vol. 127(C).
    20. Steliana Rodino & Ruxandra Pop & Cristina Sterie & Andreea Giuca & Eduard Dumitru, 2023. "Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming," Agriculture, MDPI, vol. 13(11), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:2047-:d:118047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.