IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v271y2014icp132-148.html
   My bibliography  Save this article

Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis

Author

Listed:
  • Ghisellini, Patrizia
  • Zucaro, Amalia
  • Viglia, Silvio
  • Ulgiati, Sergio

Abstract

The agricultural sector is critical for the achievement of sustainable development worldwide. Its present and future sustainability relies on the difficult balance of food production and environmental impact. The need for resource use optimization and increasing reliance on renewable energy, calls for increased development and integration of its supporting, provisioning, regulating and social services (multifunctionality) worldwide, in agreement with the global framework of the Millennium Ecosystem Assessment, the European Union Objectives and other international assessment studies (e.g. the United Nations International Assessment of Agricultural Knowledge, Science and Technology for Development).

Suggested Citation

  • Ghisellini, Patrizia & Zucaro, Amalia & Viglia, Silvio & Ulgiati, Sergio, 2014. "Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis," Ecological Modelling, Elsevier, vol. 271(C), pages 132-148.
  • Handle: RePEc:eee:ecomod:v:271:y:2014:i:c:p:132-148
    DOI: 10.1016/j.ecolmodel.2013.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013000987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Gasparatos, Alexandros, 2011. "Resource consumption in Japanese agriculture and its link to food security," Energy Policy, Elsevier, vol. 39(3), pages 1101-1112, March.
    4. Saifi, Basim & Drake, Lars, 2008. "Swedish agriculture during the twentieth century in relation to sustainability," Ecological Economics, Elsevier, vol. 68(1-2), pages 370-380, December.
    5. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    6. Cecilia Ferreyra, 2006. "Emergy analysis of one century of agricultural production in the Rolling Pampas of Argentina," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 5(2/3), pages 185-205.
    7. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaocui Dong & Hongguang Liu, 2023. "Sustainable evaluation of agroecosystem in the Yangtze River Economic Belt, China based on the Emergy Theory," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13471-13494, November.
    2. Beatriz Queiróz dos Reis & Danny Alexander Rojas Moreno & Rafael Araújo Nacimento & Vitória Toffolo Luiz & Laya Kannan Silva Alves & Biagio Fernando Giannetti & Augusto Hauber Gameiro, 2021. "Economic and Environmental Assessment Using Emergy of Sheep Production in Brazil," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    3. Kocjančič Tina & Žgajnar Jaka & Juvančič Luka, 2016. "Multiple-perspective Reorganisation of the Dairy sector: Mathematical Programming Approach," Business Systems Research, Sciendo, vol. 7(2), pages 35-48, September.
    4. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    5. Iuliia Plastinina & Lyudmila Teslyuk & Nataliya Dukmasova & Elena Pikalova, 2019. "Implementation of Circular Economy Principles in Regional Solid Municipal Waste Management: The Case of Sverdlovskaya Oblast (Russian Federation)," Resources, MDPI, vol. 8(2), pages 1-18, May.
    6. Fumin Deng & Canmian Liu & Xuedong Liang, 2017. "Measurement of Regional Agricultural Sustainable Development System Based on Dissipative Structure Theory: A Case Study in Sichuan Province, China," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    7. Oliveira, M. & Zucaro, A. & Santagata, R. & Ulgiati, S., 2022. "Environmental assessment of milk production from local to regional scales," Ecological Modelling, Elsevier, vol. 463(C).
    8. Jia He & Yi Li & Lianjun Zhang & Junyin Tan & Chuanhao Wen, 2021. "A County-Scale Spillover Ecological Value Compensation Standard of Ecological Barrier Area in China: Based on an Extended Emergy Analysis," Agriculture, MDPI, vol. 11(12), pages 1-26, November.
    9. Xue Wu & Yaliu Yang & Conghu Liu & Guowei Xu & Yuxia Guo & Fan Liu & Yuan Wang, 2021. "Sustainability of Regional Agroecological Economic System Based on Emergy Theory: A Case Study of Anhui Province, China," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    10. Zilong Zhang & Xingpeng Chen & Peter Heck, 2014. "Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    11. Zuoxi Liu & Yongyang Wang & Shanshan Wang & Huijuan Dong & Yong Geng & Bing Xue & Jiaming Gu & Run Dong Li & Tianhua Yang, 2018. "An Emergy and Decomposition Assessment of China’s Crop Production: Sustainability and Driving Forces," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    12. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    13. Lyu, Yanfeng & Yang, Xiangdong & Ma, Xiaohan & Pan, Hengyu & Zhang, Xiaohong, 2023. "Promoting coordinated development of the fertilizer production-crop plantation combined system through an integrated approach," Ecological Modelling, Elsevier, vol. 478(C).
    14. Oliveira, Mariana & Cocozza, Annalisa & Zucaro, Amalia & Santagata, Remo & Ulgiati, Sergio, 2021. "Circular economy in the agro-industry: Integrated environmental assessment of dairy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Fonseca, Ana Margarida P. & Marques, Carlos A.F. & Pinto-Correia, Teresa & Guiomar, Nuno & Campbell, Daniel E., 2019. "Emergy evaluation for decision-making in complex multifunctional farming systems," Agricultural Systems, Elsevier, vol. 171(C), pages 1-12.
    16. Vítor João Pereira Domingues MARTINHO, 2018. "Characterization Of Agricultural Systems In The European Union Regions: A Farm Dimension- Competitiveness-Technology Index As Base," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(2), pages 135-152, July.
    17. Hamidreza Shahhoseini & Mahmoud Ramroudi & Hossein Kazemi, 2023. "Emergy analysis for sustainability assessment of potato agroecosystems (case study: Golestan province, Iran)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6393-6418, July.
    18. Chen, Wei & Liu, Wenjing & Geng, Yong & Brown, Mark T. & Gao, Cuixia & Wu, Rui, 2017. "Recent progress on emergy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1051-1060.
    19. Jianying Feng & Jing Wang & Xiaoshuan Zhang & Fengtao Zhao & Radoslava Kanianska & Dong Tian, 2015. "Design and Implementation of Emergy-Based Sustainability Decision Assessment System for Protected Grape Cultivation," Sustainability, MDPI, vol. 7(10), pages 1-24, October.
    20. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    2. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    3. Hwang, In Chang, 2013. "Anthropogenic drivers of carbon emissions: scale and counteracting effects," MPRA Paper 52224, University Library of Munich, Germany.
    4. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    5. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    6. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    7. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    8. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    9. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    10. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
    11. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    12. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    13. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    14. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    15. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    16. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    17. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    18. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    19. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    20. Isik, Mine & Ari, Izzet & Sarica, Kemal, 2021. "Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach," Utilities Policy, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:271:y:2014:i:c:p:132-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.