IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p89-d87439.html
   My bibliography  Save this article

Adaptation of C 4 Bioenergy Crop Species to Various Environments within the Southern Great Plains of USA

Author

Listed:
  • Sumin Kim

    (Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA)

  • James R. Kiniry

    (USDA, Agricultural Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA)

  • Amber S. Williams

    (USDA, Agricultural Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA)

  • Norman Meki

    (Texas A&M AgriLife Research, Blackland Research and Extension Center, Temple, TX 76502, USA)

  • Lewis Gaston

    (School of Plant, Environmental, and Soil Science, College of Agriculture at LSI AgCenter, Baton Rouge, LA 70803, USA)

  • Melinda Brakie

    (USDA-NRCS East Texas Plant Materials Center, Nacogdoches, TX 76501, USA)

  • Alan Shadow

    (USDA-NRCS East Texas Plant Materials Center, Nacogdoches, TX 76501, USA)

  • Felix B. Fritschi

    (Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA)

  • Yanqi Wu

    (Oklahoma State University, Stillwater, OK 74078, USA)

Abstract

As highly productive perennial grasses are evaluated as bioenergy feedstocks, a major consideration is biomass yield stability. Two experiments were conducted to examine some aspects of yield stability for two biofuel species: switchgrass ( Panicum vigratum L.) and Miscanthus x giganteus ( Mxg ). Biomass yields of these species were evaluated under various environmental conditions across the Southern Great Plains (SGP), including some sites with low soil fertility. In the first experiment, measured yields of four switchgrass ecotypes and Mxg varied among locations. Overall, plants showed optimal growth performance in study sites close to their geographical origins. Lowland switchgrass ecotypes and Mxg yields simulated by the ALMANAC model showed reasonable agreement with the measured yields across all study locations, while the simulated yields of upland switchgrass ecotypes were overestimated in northern locations. In the second experiment, examination of different N fertilizer rates revealed switchgrass yield increases over the range of 0, 80, or 160 kg N ha −1 year −1 , while Mxg only showed yield increases between the low and medium N rates. This provides useful insights to crop management of two biofuel species and to enhance the predictive accuracy of process-based models, which are critical for developing bioenergy market systems in the SGP.

Suggested Citation

  • Sumin Kim & James R. Kiniry & Amber S. Williams & Norman Meki & Lewis Gaston & Melinda Brakie & Alan Shadow & Felix B. Fritschi & Yanqi Wu, 2017. "Adaptation of C 4 Bioenergy Crop Species to Various Environments within the Southern Great Plains of USA," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:89-:d:87439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emily Heaton & Stephen Long & Thomas Voigt & Michael Jones & John Clifton-Brown, 2004. "Miscanthus for Renewable Energy Generation: European Union Experience and Projections for Illinois," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 433-451, October.
    2. Kiniry, James R. & Williams, J. R. & Gassman, Philip W. & Debacke, P., 1992. "General, Process-Oriented Model for Two Competing Plant Species (A)," Staff General Research Papers Archive 483, Iowa State University, Department of Economics.
    3. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Sumin & Kim, Sojung, 2023. "Optimization of the design of an agrophotovoltaic system in future climate conditions in South Korea," Renewable Energy, Elsevier, vol. 206(C), pages 928-938.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia y Garcia, Axel & Guerra, Larry C. & Hoogenboom, Gerrit, 2008. "Impact of generated solar radiation on simulated crop growth and yield," Ecological Modelling, Elsevier, vol. 210(3), pages 312-326.
    2. Xie, Yun & Kiniry, James R. & Williams, Jimmy R., 2003. "The ALMANAC model's sensitivity to input variables," Agricultural Systems, Elsevier, vol. 78(1), pages 1-16, October.
    3. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    4. Čerkasova, Natalja & White, Michael & Arnold, Jeffrey & Bieger, Katrin & Allen, Peter & Gao, Jungang & Gambone, Marilyn & Meki, Manyowa & Kiniry, James & Gassman, Philip W., 2023. "Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development," Agricultural Systems, Elsevier, vol. 210(C).
    5. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    6. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    7. Kiniry, James R. & Bean, Brent & Xie, Yun & Chen, Pei-yu, 2004. "Maize yield potential: critical processes and simulation modeling in a high-yielding environment," Agricultural Systems, Elsevier, vol. 82(1), pages 45-56, October.
    8. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    9. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    10. Talebizadeh, Mansour & Moriasi, Daniel & Gowda, Prasanna & Steiner, Jean L. & Tadesse, Haile K. & Nelson, Amanda M. & Starks, Patrick, 2018. "Simultaneous calibration of evapotranspiration and crop yield in agronomic system modeling using the APEX model," Agricultural Water Management, Elsevier, vol. 208(C), pages 299-306.
    11. Ascough II, J.C. & Andales, A.A. & Sherrod, L.A. & McMaster, G.S. & Hansen, N.C. & DeJonge, K.C. & Fathelrahman, E.M. & Ahuja, L.R. & Peterson, G.A. & Hoag, D.L., 2010. "Simulating landscape catena effects in no-till dryland agroecosystems using GPFARM," Agricultural Systems, Elsevier, vol. 103(8), pages 569-584, October.
    12. Stefan Gold, 2011. "Bio-energy supply chains and stakeholders," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(4), pages 439-462, April.
    13. Napoli, Marco & Orlandini, Simone, 2015. "Evaluating the Arc-SWAT2009 in predicting runoff, sediment, and nutrient yields from a vineyard and an olive orchard in Central Italy," Agricultural Water Management, Elsevier, vol. 153(C), pages 51-62.
    14. Ge, Xumeng & Xu, Fuqing & Vasco-Correa, Juliana & Li, Yebo, 2016. "Giant reed: A competitive energy crop in comparison with miscanthus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 350-362.
    15. Xue, Shuai & Kalinina, Olena & Lewandowski, Iris, 2015. "Present and future options for Miscanthus propagation and establishment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1233-1246.
    16. Anand, Mohit & Duffy, Patricia & Bransby, David, 2017. "Will switchgrass as a bio-crop be adopted by the farmers?," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252724, Southern Agricultural Economics Association.
    17. Żyromski, Andrzej & Szulczewski, Wiesław & Biniak-Pieróg, Małgorzata & Jakubowski, Wojciech, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach. Part I: Background and statistical description," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1118-1126.
    18. Gedikoglu, Haluk, 2012. "Impact of Off-Farm Employment on Farmers’ Willingness to Grow Switchgrass and Miscanthus," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119663, Southern Agricultural Economics Association.
    19. Kheshgi, Haroon S. & Prince, Roger C., 2005. "Sequestration of fermentation CO2 from ethanol production," Energy, Elsevier, vol. 30(10), pages 1865-1871.
    20. Bok, Jin Pil & Choi, Hang Seok & Choi, Joon Weon & Choi, Yeon Seok, 2013. "Fast pyrolysis of Miscanthus sinensis in fluidized bed reactors: Characteristics of product yields and biocrude oil quality," Energy, Elsevier, vol. 60(C), pages 44-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:89-:d:87439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.