IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp1233-1246.html
   My bibliography  Save this article

Present and future options for Miscanthus propagation and establishment

Author

Listed:
  • Xue, Shuai
  • Kalinina, Olena
  • Lewandowski, Iris

Abstract

Several species of the genus Miscanthus are characterized by high biomass yields and low input requirements, and there is increasing interest in their commercial use for bioenergy production. However, the lack of inexpensive and effective propagation and establishment techniques is currently limiting the potential of miscanthus as a commercial bioenergy crop. In this review, through an evaluation of previous studies, results of our own field trials, experiments and farmer surveys, we concluded that there are five main approaches that can be used for miscanthus establishment. First is direct rhizome planting which is relatively mature, easily realized and inexpensive (1904–3375.7€ha−1); therefore it is the method mostly preferred by farmers. However, in the long term, its low dividing efficiency (1:10) will cause a conflict between the demand for and supply of rhizomes for large-scale plantations. Compared to the direct rhizome planting, an increased multiplication ratio (1:30) has been realized using rhizome- or stem-derived plantlets. However, due to higher labour and energy inputs required for the pre-growing of plantlets, their establishment cost reduction potential is limited, with estimated costs of between 4240.8€ha−1 and 4400.8€ha−1. The seed-setting rate of miscanthus (Miscanthus sinensis) is very low (0.0–28.7%) under the climatic conditions of south-west Germany, making commercial seed production difficult. The high multiplication ratio (1:960) and fast bulk-up production potential achieved by micropropagation provide an opportunity to reduce the costs of this currently most expensive establishment method (6320.8€ha−1). The cheapest method could be direct seed sowing (1508.5€ha−1) if it will become feasible in future. Additionally, the recently developed CEED technology may become a good alternative, if it is not too expensive. For all the propagation methods considered, new technologies and research efforts are required to reduce the material production costs and simultaneously increase the multiplication ratio.

Suggested Citation

  • Xue, Shuai & Kalinina, Olena & Lewandowski, Iris, 2015. "Present and future options for Miscanthus propagation and establishment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1233-1246.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:1233-1246
    DOI: 10.1016/j.rser.2015.04.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edwards, William M., 2001. "Machinery Management: Farm Machinery Selection," Staff General Research Papers Archive 2042, Iowa State University, Department of Economics.
    2. Emily Heaton & Stephen Long & Thomas Voigt & Michael Jones & John Clifton-Brown, 2004. "Miscanthus for Renewable Energy Generation: European Union Experience and Projections for Illinois," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 433-451, October.
    3. Smeets, Edward M.W. & Lewandowski, Iris M. & Faaij, André P.C., 2009. "The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1230-1245, August.
    4. Alexander, Peter & Moran, Dominic, 2013. "Impact of perennial energy crops income variability on the crop selection of risk averse farmers," Energy Policy, Elsevier, vol. 52(C), pages 587-596.
    5. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    6. Berbel, J. & Calatrava, J. & Garrido. A., 2007. "Water pricing and irrigation: a review of the European experience," IWMI Books, Reports H040611, International Water Management Institute.
    7. Molle, Francois & Berkoff, Jeremy (ed.), 2007. "Irrigation water pricing: the gap between theory and practice," IWMI Books, International Water Management Institute, number 137957.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tavseef Mairaj Shah & Anzar Hussain Khan & Cherisa Nicholls & Ihsanullah Sohoo & Ralf Otterpohl, 2023. "Using Landfill Sites and Marginal Lands for Socio-Economically Sustainable Biomass Production through Cultivation of Non-Food Energy Crops: An Analysis Focused on South Asia and Europe," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    2. Stanisław Rolbiecki & Małgorzata Biniak-Pieróg & Andrzej Żyromski & Wiesława Kasperska-Wołowicz & Barbara Jagosz & Piotr Stachowski & Daniel Liberacki & Ewa Kanecka-Geszke & Hicran A. Sadan & Roman Ro, 2021. "Effect of Forecast Climate Changes on Water Needs of Giant Miscanthus Cultivated in the Kuyavia Region in Poland," Energies, MDPI, vol. 14(20), pages 1-13, October.
    3. Xue, Shuai & Lewandowski, Iris & Wang, Xiaoyu & Yi, Zili, 2016. "Assessment of the production potentials of Miscanthus on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 932-943.
    4. Moritz von Cossel & Yasir Iqbal & Iris Lewandowski, 2019. "Improving the Ecological Performance of Miscanthus ( Miscanthus × giganteus Greef et Deuter) through Intercropping with Woad ( Isatis tinctoria L.) and Yellow Melilot ( Melilotus officinalis L.)," Agriculture, MDPI, vol. 9(9), pages 1-12, September.
    5. Anna Kapczyńska & Iwona Kowalska & Barbara Prokopiuk & Bożena Pawłowska, 2020. "Rooting Media and Biostimulator Goteo Treatment Effect the Adventitious Root Formation of Pennisetum ‘Vertigo’ Cuttings and the Quality of the Final Product," Agriculture, MDPI, vol. 10(11), pages 1-12, November.
    6. Moritz von Cossel & Anja Mangold & Yasir Iqbal & Iris Lewandowski, 2019. "Methane Yield Potential of Miscanthus ( Miscanthus × giganteus (Greef et Deuter)) Established under Maize ( Zea mays L.)," Energies, MDPI, vol. 12(24), pages 1-17, December.
    7. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
    8. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    2. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    3. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    4. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    5. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
    6. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    7. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    8. Calatrava-Leyva, Javier & Guillem, Amanda & Martinez-Granados, David, 2011. "Análisis de alternativas para la eliminación de la sobreexplotación de acuíferos en el Valle de Guadalentín," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 11(02), pages 1-30, December.
    9. Alfonso Expósito & Julio Berbel, 2017. "Why Is Water Pricing Ineffective for Deficit Irrigation Schemes? A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 1047-1059, February.
    10. Sapino, Francesco & Pérez-Blanco, C. Dionisio & Gutiérrez-Martín, Carlos & García-Prats, Alberto & Pulido-Velazquez, Manuel, 2022. "Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Smeets, Edward M.W. & Lewandowski, Iris M. & Faaij, André P.C., 2009. "The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1230-1245, August.
    12. Finger, Robert, 2012. "Modeling the sensitivity of agricultural water use to price variability and climate change—An application to Swiss maize production," Agricultural Water Management, Elsevier, vol. 109(C), pages 135-143.
    13. Lee, Mi-Yong & Kohlheb, Norbert & Emödi, Andrea, 2012. "Steuerung des Wandels im Theiß-Einzugsgebiet: Eine Institutionen- und Stakeholderanalyse," UFZ Discussion Papers 08/2012, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    14. Christos Zoumides & Adriana Bruggeman & Theodoros Zachariadis & Stelios Pashiardis, 2013. "Quantifying the Poorly Known Role of Groundwater in Agriculture: the Case of Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2501-2514, May.
    15. Laureti, Tiziana & Benedetti, Ilaria & Branca, Giacomo, 2021. "Water use efficiency and public goods conservation: A spatial stochastic frontier model applied to irrigation in Southern Italy," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    16. Molle, Francois & Al Karablieh, E. & Al Naber, M. & Closas, Alvar & Salman, A., 2017. "Groundwater governance in Jordan: the case of Azraq Basin. A Policy White Paper," IWMI Reports 273350, International Water Management Institute.
    17. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    18. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    19. De Toni, Andrea & Vizzarri, Matteo & Di Febbraro, Mirko & Lasserre, Bruno & Noguera, Joan & Di Martino, Paolo, 2021. "Aligning Inner Peripheries with rural development in Italy: Territorial evidence to support policy contextualization," Land Use Policy, Elsevier, vol. 100(C).
    20. Lan Mu & Chunxia Luo & Zongjia Tan & Binglin Zhang & Xiaojuan Qu, 2023. "Assessing the Impact of Different Agricultural Irrigation Charging Methods on Sustainable Agricultural Production," Sustainability, MDPI, vol. 15(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:1233-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.