IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6174-d1115206.html
   My bibliography  Save this article

Analyzing Diets’ Contribution to Greenhouse Gas Emissions in Brasilia, Brazil

Author

Listed:
  • Victor Silva

    (Center for Environmental Studies and Research, University of Campinas, Campinas 13083-870, Brazil
    Graduate Program on Environmental Technology and Water Resources, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil)

  • Francisco Contreras

    (Graduate Program on Environmental Technology and Water Resources, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil)

  • Ryu Koide

    (Material Cycles Division, Global Resource Sustainability Research Section, National Institute for Environmental Studies, Tsukuba 305-8506, Japan)

  • Chen Liu

    (Sustainable Consumption and Production Area, Institute for Global Environmental Strategies, Hayama 240-0115, Japan)

Abstract

Given the effort to reduce greenhouse gas (GHG) emissions, understanding the consumption patterns that facilitate and support changes is essential. In this context, household food consumption constitutes a large part of society’s environmental impacts due to the production and solid waste generation stages. Hence, we focus on applying the Life Cycle Assessment to estimate Brasilia’s GHG emissions associated with household food consumption. We have used microdata from the Personal Food Consumption Analysis to address consumption patterns. The life cycle approach relies on the adaptations for Brasilia’s scenario of the inventories available in the databases of Ecoinvent 3.6 Cutoff and Agribalyse 3.0.1. Individuals’ GHG emissions results were classified according to sociodemographic groups and dietary patterns and analyzed through Analysis of Variance (ANOVA). The results indicate that household food consumption contributes 11,062.39 t CO 2 e daily, averaging 5.05 kg CO 2 e per capita. Meat consumption accounts for the largest share of emissions (55.27%), followed by beverages (18.78%) and cereals (7.29%). The ANOVA results indicate that individuals living in houses, individuals between 45 and 54 years old, and men have a higher carbon footprint. Therefore, future analyses for potential reduction should incorporate these target groups. Regarding dietary patterns, vegan individuals contribute 3.05 kg CO 2 e/day, 59.00% fewer emissions than omnivorous people. The no red meat, pescatarian, and vegetarian diets also imply lower food-related GHG emissions.

Suggested Citation

  • Victor Silva & Francisco Contreras & Ryu Koide & Chen Liu, 2023. "Analyzing Diets’ Contribution to Greenhouse Gas Emissions in Brasilia, Brazil," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6174-:d:1115206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    2. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    3. Henrik Saxe & Thomas Larsen & Lisbeth Mogensen, 2013. "The global warming potential of two healthy Nordic diets compared with the average Danish diet," Climatic Change, Springer, vol. 116(2), pages 249-262, January.
    4. Arrieta, E.M. & González, A.D., 2018. "Impact of current, National Dietary Guidelines and alternative diets on greenhouse gas emissions in Argentina," Food Policy, Elsevier, vol. 79(C), pages 58-66.
    5. Edgar G. Hertwich, 2005. "Consumption and the Rebound Effect: An Industrial Ecology Perspective," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 85-98, January.
    6. Vieux, F. & Darmon, N. & Touazi, D. & Soler, L.G., 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less?," Ecological Economics, Elsevier, vol. 75(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johanna Ruett & Lena Hennes & Jens Teubler & Boris Braun, 2022. "How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    2. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    3. Anna Kustar & Dalia Patino-Echeverri, 2021. "A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    4. Thomas Bøker Lund & David Watson & Sinne Smed & Lotte Holm & Thomas Eisler & Annemette Nielsen, 2017. "The Diet-related GHG Index: construction and validation of a brief questionnaire-based index," Climatic Change, Springer, vol. 140(3), pages 503-517, February.
    5. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
    6. Vincent Sennes & Jacques Breillat & Francis Ribeyre & Sandrine Gombert, 2009. "Local policies for reducing the ecological impact of households: the case study of a suburban area in France," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(5), pages 1031-1049, October.
    7. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    8. Benedetto, Graziella & Rugani, Benedetto & Vázquez-Rowe, Ian, 2014. "Rebound effects due to economic choices when assessing the environmental sustainability of wine," Food Policy, Elsevier, vol. 49(P1), pages 167-173.
    9. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    10. Dimitropoulos, John, 2007. "Energy productivity improvements and the rebound effect: An overview of the state of knowledge," Energy Policy, Elsevier, vol. 35(12), pages 6354-6363, December.
    11. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    12. Steinberger, Julia K. & van Niel, Johan & Bourg, Dominique, 2009. "Profiting from negawatts: Reducing absolute consumption and emissions through a performance-based energy economy," Energy Policy, Elsevier, vol. 37(1), pages 361-370, January.
    13. Ingolfur Blühdorn & Michael Deflorian, 2019. "The Collaborative Management of Sustained Unsustainability: On the Performance of Participatory Forms of Environmental Governance," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    14. Uddin, Main & Wang, Liang Choon & Smyth, Russell, 2021. "Do government-initiated energy comparison sites encourage consumer search and lower prices? Evidence from an online randomized controlled experiment in Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 167-182.
    15. Vivian G. M. Quam & Joacim Rocklöv & Mikkel B. M. Quam & Rebekah A. I. Lucas, 2017. "Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies," IJERPH, MDPI, vol. 14(5), pages 1-19, April.
    16. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    17. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    18. Ornetzeder, Michael & Hertwich, Edgar G. & Hubacek, Klaus & Korytarova, Katarina & Haas, Willi, 2008. "The environmental effect of car-free housing: A case in Vienna," Ecological Economics, Elsevier, vol. 65(3), pages 516-530, April.
    19. Galvin, Ray, 2014. "Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data," Energy Policy, Elsevier, vol. 73(C), pages 323-332.
    20. Lin Fang & Fengping Wu & Yantuan Yu & Lin Zhang, 2020. "Irrigation technology and water rebound in China's agricultural sector," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1088-1100, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6174-:d:1115206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.