IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v125y2014i2p179-192.html
   My bibliography  Save this article

Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK

Author

Listed:
  • Peter Scarborough
  • Paul Appleby
  • Anja Mizdrak
  • Adam Briggs
  • Ruth Travis
  • Kathryn Bradbury
  • Timothy Key

Abstract

The production of animal-based foods is associated with higher greenhouse gas (GHG) emissions than plant-based foods. The objective of this study was to estimate the difference in dietary GHG emissions between self-selected meat-eaters, fish-eaters, vegetarians and vegans in the UK. Subjects were participants in the EPIC-Oxford cohort study. The diets of 2,041 vegans, 15,751 vegetarians, 8,123 fish-eaters and 29,589 meat-eaters aged 20–79 were assessed using a validated food frequency questionnaire. Comparable GHG emissions parameters were developed for the underlying food codes using a dataset of GHG emissions for 94 food commodities in the UK, with a weighting for the global warming potential of each component gas. The average GHG emissions associated with a standard 2,000 kcal diet were estimated for all subjects. ANOVA was used to estimate average dietary GHG emissions by diet group adjusted for sex and age. The age-and-sex-adjusted mean (95 % confidence interval) GHG emissions in kilograms of carbon dioxide equivalents per day (kgCO 2 e/day) were 7.19 (7.16, 7.22) for high meat-eaters ( > = 100 g/d), 5.63 (5.61, 5.65) for medium meat-eaters (50-99 g/d), 4.67 (4.65, 4.70) for low meat-eaters ( > 50 g/d), 3.91 (3.88, 3.94) for fish-eaters, 3.81 (3.79, 3.83) for vegetarians and 2.89 (2.83, 2.94) for vegans. In conclusion, dietary GHG emissions in self-selected meat-eaters are approximately twice as high as those in vegans. It is likely that reductions in meat consumption would lead to reductions in dietary GHG emissions. Copyright The Author(s) 2014

Suggested Citation

  • Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
  • Handle: RePEc:spr:climat:v:125:y:2014:i:2:p:179-192
    DOI: 10.1007/s10584-014-1169-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1169-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1169-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florent Vieux & Nicole N. Darmon & Djilali Touazi & Louis Georges Soler, 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the Q23 diet structure or consuming less?," Post-Print hal-02649979, HAL.
    2. González, Alejandro D. & Frostell, Björn & Carlsson-Kanyama, Annika, 2011. "Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation," Food Policy, Elsevier, vol. 36(5), pages 562-570, October.
    3. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    4. Vieux, F. & Darmon, N. & Touazi, D. & Soler, L.G., 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less?," Ecological Economics, Elsevier, vol. 75(C), pages 91-101.
    5. Henrik Saxe & Thomas Larsen & Lisbeth Mogensen, 2013. "The global warming potential of two healthy Nordic diets compared with the average Danish diet," Climatic Change, Springer, vol. 116(2), pages 249-262, January.
    6. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    7. Berners-Lee, M. & Hoolohan, C. & Cammack, H. & Hewitt, C.N., 2012. "The relative greenhouse gas impacts of realistic dietary choices," Energy Policy, Elsevier, vol. 43(C), pages 184-190.
    8. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    9. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(Supplemen), pages 23-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    2. Johanna Ruett & Lena Hennes & Jens Teubler & Boris Braun, 2022. "How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    3. Vivian G. M. Quam & Joacim Rocklöv & Mikkel B. M. Quam & Rebekah A. I. Lucas, 2017. "Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies," IJERPH, MDPI, vol. 14(5), pages 1-19, April.
    4. Erica Doro & Vincent Réquillart, 2020. "Review of sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 101(1), pages 117-146.
    5. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    6. van Dooren, Corné & Douma, Annely & Aiking, Harry & Vellinga, Pier, 2017. "Proposing a Novel Index Reflecting Both Climate Impact and Nutritional Impact of Food Products," Ecological Economics, Elsevier, vol. 131(C), pages 389-398.
    7. Ariane Kehlbacher & Richard Tiffin & Adam Briggs & Mike Berners-Lee & Peter Scarborough, 2016. "The distributional and nutritional impacts and mitigation potential of emission-based food taxes in the UK," Climatic Change, Springer, vol. 137(1), pages 121-141, July.
    8. Doro, Erica & Réquillart, Vincent, 2018. "Sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," TSE Working Papers 18-913, Toulouse School of Economics (TSE).
    9. Rosemary Green & James Milner & Alan Dangour & Andy Haines & Zaid Chalabi & Anil Markandya & Joseph Spadaro & Paul Wilkinson, 2015. "The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change," Climatic Change, Springer, vol. 129(1), pages 253-265, March.
    10. Goldstein, Benjamin & Hansen, Steffen Foss & Gjerris, Mickey & Laurent, Alexis & Birkved, Morten, 2016. "Ethical aspects of life cycle assessments of diets," Food Policy, Elsevier, vol. 59(C), pages 139-151.
    11. van Dooren, C. & Marinussen, Mari & Blonk, Hans & Aiking, Harry & Vellinga, Pier, 2014. "Exploring dietary guidelines based on ecological and nutritional values: A comparison of six dietary patterns," Food Policy, Elsevier, vol. 44(C), pages 36-46.
    12. Michael Martin & Miguel Brandão, 2017. "Evaluating the Environmental Consequences of Swedish Food Consumption and Dietary Choices," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    13. Xiaoke Yang & Zhihang Zhang & Huangyixin Chen & Rongrong Zhao & Zhongyue Xu & Anguo Xie & Qiuhua Chen, 2019. "Assessing the Carbon Emission Driven by the Consumption of Carbohydrate-Rich Foods: The Case of China," Sustainability, MDPI, vol. 11(7), pages 1-15, March.
    14. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    15. van Dooren, C. & Keuchenius, C. & de Vries, J.H.M. & de Boer, J. & Aiking, H., 2018. "Unsustainable dietary habits of specific subgroups require dedicated transition strategies: Evidence from the Netherlands," Food Policy, Elsevier, vol. 79(C), pages 44-57.
    16. Thomas Bøker Lund & David Watson & Sinne Smed & Lotte Holm & Thomas Eisler & Annemette Nielsen, 2017. "The Diet-related GHG Index: construction and validation of a brief questionnaire-based index," Climatic Change, Springer, vol. 140(3), pages 503-517, February.
    17. Reynolds, Christian John & Piantadosi, Julia & Buckley, Jonathan David & Weinstein, Philip & Boland, John, 2015. "Evaluation of the environmental impact of weekly food consumption in different socio-economic households in Australia using environmentally extended input–output analysis," Ecological Economics, Elsevier, vol. 111(C), pages 58-64.
    18. Corné Van Dooren & Marcelo Tyszler & Gerard F. H. Kramer & Harry Aiking, 2015. "Combining Low Price, Low Climate Impact and High Nutritional Value in One Shopping Basket through Diet Optimization by Linear Programming," Sustainability, MDPI, vol. 7(9), pages 1-19, September.
    19. Abeliotis, Konstadinos & Costarelli, Vassiliki & Anagnostopoulos, Konstadinos, 2016. "The Effect of Different Types of Diet on Greenhouse Gas Emissions in Greece," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 7(1), pages 1-14, February.
    20. Elinor Hallström & Quentin Gee & Peter Scarborough & David A. Cleveland, 2017. "A healthier US diet could reduce greenhouse gas emissions from both the food and health care systems," Climatic Change, Springer, vol. 142(1), pages 199-212, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:125:y:2014:i:2:p:179-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.