IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v116y2013i2p249-262.html
   My bibliography  Save this article

The global warming potential of two healthy Nordic diets compared with the average Danish diet

Author

Listed:
  • Henrik Saxe
  • Thomas Larsen
  • Lisbeth Mogensen

Abstract

The potential greenhouse gas (GHG) emissions from the production of food for three different diets are compared using consequential Life Cycle Assessment. Diet 1 is an Average Danish Diet (ADD); diet 2 is based on the Nordic Nutritional Recommendations (NNR), whilst diet 3 is a New Nordic Diet (NND) developed by the OPUS project. The NND contains locally produced Nordic foods where more than 75 % is organically produced. NNR and NND include less meat and more fruit and vegetables than the ADD. All diets were adjusted to contain a similar energy and protein content. The GHG emissions from the provision of NNR and NND were lower than for ADD, 8 % and 7 % respectively. If GHG emissions from transport (locally produced versus imported food) are also taken into account, the difference in GHG emissions between NND and ADD increases to 12 %. If the production method (organic versus conventional) is taken into account so that the ADD contains the actual ratio of organically produced food (6.6 %) and the NND contains 80 %, the GHG emissions for the NND are only 6 % less than for the ADD. When the NND was optimised to be more climate friendly, the global warming potential of the NND was 27 % lower than it was for the ADD. This was achieved by including less beef, and only including organic produce if the GHG emissions are lower than for the conventional version, or by substituting all meat with legumes, dairy products and eggs. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Henrik Saxe & Thomas Larsen & Lisbeth Mogensen, 2013. "The global warming potential of two healthy Nordic diets compared with the average Danish diet," Climatic Change, Springer, vol. 116(2), pages 249-262, January.
  • Handle: RePEc:spr:climat:v:116:y:2013:i:2:p:249-262
    DOI: 10.1007/s10584-012-0495-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0495-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0495-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florent Vieux & Nicole N. Darmon & Djilali Touazi & Louis Georges Soler, 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the Q23 diet structure or consuming less?," Post-Print hal-02649979, HAL.
    2. Weidema, Bo Pedersen, 2009. "Using the budget constraint to monetarise impact assessment results," Ecological Economics, Elsevier, vol. 68(6), pages 1591-1598, April.
    3. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    4. Vieux, F. & Darmon, N. & Touazi, D. & Soler, L.G., 2012. "Greenhouse gas emissions of self-selected individual diets in France: Changing the diet structure or consuming less?," Ecological Economics, Elsevier, vol. 75(C), pages 91-101.
    5. Carlsson-Kanyama, Annika, 1998. "Climate change and dietary choices -- how can emissions of greenhouse gases from food consumption be reduced?," Food Policy, Elsevier, vol. 23(3-4), pages 277-293, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brunner, Florentine & Kurz, Verena & Bryngelsson, David & Hedenus, Fredrik, 2018. "Carbon Label at a University Restaurant – Label Implementation and Evaluation," Ecological Economics, Elsevier, vol. 146(C), pages 658-667.
    2. Zech, Konstantin M. & Schneider, Uwe A., 2019. "Technical biofuel production and GHG mitigation potentials through healthy diets in the EU," Agricultural Systems, Elsevier, vol. 168(C), pages 27-35.
    3. Elinor Hallström & Quentin Gee & Peter Scarborough & David A. Cleveland, 2017. "A healthier US diet could reduce greenhouse gas emissions from both the food and health care systems," Climatic Change, Springer, vol. 142(1), pages 199-212, May.
    4. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    5. Áróra Árnadóttir & Michał Czepkiewicz & Jukka Heinonen, 2019. "The Geographical Distribution and Correlates of Pro-Environmental Attitudes and Behaviors in an Urban Region," Energies, MDPI, vol. 12(8), pages 1-29, April.
    6. Doro, Erica & Réquillart, Vincent, 2018. "Sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," TSE Working Papers 18-913, Toulouse School of Economics (TSE).
    7. Erica Doro & Vincent Réquillart, 2020. "Review of sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(1), pages 117-146, October.
    8. Rehkamp, Sarah & Canning, Patrick, 2016. "The Effects of American Diets on Food System Energy Use," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235896, Agricultural and Applied Economics Association.
    9. Rehkamp, Sarah & Azzam, Azzeddine & Gustafson, Christopher R., 2015. "The Cost Savings of Changes to Healthier Diets in the U.S," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205608, Agricultural and Applied Economics Association.
    10. Rehkamp, Sarah & Canning, Patrick, 2018. "Measuring Embodied Blue Water in American Diets: An EIO Supply Chain Approach," Ecological Economics, Elsevier, vol. 147(C), pages 179-188.
    11. Vivian G. M. Quam & Joacim Rocklöv & Mikkel B. M. Quam & Rebekah A. I. Lucas, 2017. "Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies," IJERPH, MDPI, vol. 14(5), pages 1-19, April.
    12. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    13. Johanna Ruett & Lena Hennes & Jens Teubler & Boris Braun, 2022. "How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    14. Artur Granstedt & Olof Thomsson, 2022. "Sustainable Agriculture and Self-Sufficiency in Sweden—Calculation of Climate Impact and Acreage Need Based on Ecological Recycling Agriculture Farms," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    15. Thomas Bøker Lund & David Watson & Sinne Smed & Lotte Holm & Thomas Eisler & Annemette Nielsen, 2017. "The Diet-related GHG Index: construction and validation of a brief questionnaire-based index," Climatic Change, Springer, vol. 140(3), pages 503-517, February.
    16. Abeliotis, Konstadinos & Costarelli, Vassiliki & Anagnostopoulos, Konstadinos, 2016. "The Effect of Different Types of Diet on Greenhouse Gas Emissions in Greece," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 7(1), pages 1-14, February.
    17. Carla R V Coelho & Franck Pernollet & Hayo M G van der Werf, 2016. "Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-11, August.
    18. Rhys Manners & Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Ana M. Tarquis, 2020. "Transitioning European Protein-Rich Food Consumption and Production towards More Sustainable Patterns—Strategies and Policy Suggestions," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    19. Pauline Bergström & Christopher Malefors & Ingrid Strid & Ole Jørgen Hanssen & Mattias Eriksson, 2020. "Sustainability Assessment of Food Redistribution Initiatives in Sweden," Resources, MDPI, vol. 9(3), pages 1-27, March.
    20. Victor Silva & Francisco Contreras & Ryu Koide & Chen Liu, 2023. "Analyzing Diets’ Contribution to Greenhouse Gas Emissions in Brasilia, Brazil," Sustainability, MDPI, vol. 15(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria De Laurentiis & Dexter V.L. Hunt & Christopher D.F. Rogers, 2016. "Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach," Sustainability, MDPI, vol. 8(1), pages 1-23, January.
    2. Abeliotis, Konstadinos & Costarelli, Vassiliki & Anagnostopoulos, Konstadinos, 2016. "The Effect of Different Types of Diet on Greenhouse Gas Emissions in Greece," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 7(1), pages 1-14, February.
    3. Caillavet, France & Fadhuile, Adélaïde & Nichèle, Véronique, 2019. "Assessing the distributional effects of carbon taxes on food: Inequalities and nutritional insights in France," Ecological Economics, Elsevier, vol. 163(C), pages 20-31.
    4. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    5. McCarthy, Sinéad N. & O’Rourke, Daniel & Kearney, John & McCarthy, Mary & Henchion, Maeve & Hyland, J. J., 2018. "Excessive Food Consumption in Irish Adults: Implications for Climatic Sustainability and Public Health," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276208, European Association of Agricultural Economists.
    6. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    7. Vivian G. M. Quam & Joacim Rocklöv & Mikkel B. M. Quam & Rebekah A. I. Lucas, 2017. "Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies," IJERPH, MDPI, vol. 14(5), pages 1-19, April.
    8. Anthony Fardet & Edmond Rock, 2020. "Ultra-Processed Foods and Food System Sustainability: What Are the Links?," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    9. Erica Doro & Vincent Réquillart, 2020. "Review of sustainable diets: are nutritional objectives and low-carbon-emission objectives compatible?," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 101(1), pages 117-146.
    10. Rutten, Martine & Achterbosch, Thom J. & de Boer, Imke J.M. & Cuaresma, Jesus Crespo & Geleijnse, Johanna M. & Havlík, Petr & Heckelei, Thomas & Ingram, John & Leip, Adrian & Marette, Stéphan & van Me, 2018. "Metrics, models and foresight for European sustainable food and nutrition security: The vision of the SUSFANS project," Agricultural Systems, Elsevier, vol. 163(C), pages 45-57.
    11. Pelletier, N., 2008. "Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions," Agricultural Systems, Elsevier, vol. 98(2), pages 67-73, September.
    12. Claire Lamine & Danièle Magda & Marie-Josèphe Amiot, 2019. "Crossing Sociological, Ecological, and Nutritional Perspectives on Agrifood Systems Transitions: Towards a Transdisciplinary Territorial Approach," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    13. Anna Kustar & Dalia Patino-Echeverri, 2021. "A Review of Environmental Life Cycle Assessments of Diets: Plant-Based Solutions Are Truly Sustainable, even in the Form of Fast Foods," Sustainability, MDPI, vol. 13(17), pages 1-22, September.
    14. Irz, Xavier & Leroy, Pascal & Réquillart, Vincent & Soler, Louis-Georges, 2016. "Welfare and sustainability effects of dietary recommendations," Ecological Economics, Elsevier, vol. 130(C), pages 139-155.
    15. Jean Pierre Huiban & Antonio Musolesi, 2012. "Augmenting the production function with knowledge capital to test the Porter hypothesis: the case of French food industries," Working Papers hal-02804599, HAL.
    16. van Dooren, C. & Keuchenius, C. & de Vries, J.H.M. & de Boer, J. & Aiking, H., 2018. "Unsustainable dietary habits of specific subgroups require dedicated transition strategies: Evidence from the Netherlands," Food Policy, Elsevier, vol. 79(C), pages 44-57.
    17. Xavier Irz & Pascal Leroy & Vincent V. Requillart & Louis Georges Soler & Olivier Allais, 2013. "Identifying sustainable diets compatible with consumer preferences [Identification de régimes alimentaires durables compatibles avec les préférences des consommateurs]," Post-Print hal-02804826, HAL.
    18. Thomas Bøker Lund & David Watson & Sinne Smed & Lotte Holm & Thomas Eisler & Annemette Nielsen, 2017. "The Diet-related GHG Index: construction and validation of a brief questionnaire-based index," Climatic Change, Springer, vol. 140(3), pages 503-517, February.
    19. Stéphan Marette & Vincent Réquillart, 2020. "Dietary models and challenges for economics," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(1), pages 5-22, October.
    20. Caillavet, France & Fadhuile, Adelaide & Nichèle, Véronique, 2018. "How does carbon pricing matter for a climate-friendly food consumption?," 2018 Annual Meeting, August 5-7, Washington, D.C. 273860, Agricultural and Applied Economics Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:116:y:2013:i:2:p:249-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.