IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6025-d1112193.html
   My bibliography  Save this article

Analysis of Dynamic Connectedness Relationships among Clean Energy, Carbon Emission Allowance, and BIST Indexes

Author

Listed:
  • Mesut Doğan

    (Department of Banking and Finance, Bilecik Seyh Edebali University, Bilecik 11300, Turkey)

  • Sutbayeva Raikhan

    (Department of Management, Caspian University of Technologies and Engineering, Aktau 130000, Kazakhstan)

  • Nurbossynova Zhanar

    (Department of Management, Caspian University of Technologies and Engineering, Aktau 130000, Kazakhstan)

  • Bodaukhan Gulbagda

    (Department of Management, Caspian University of Technologies and Engineering, Aktau 130000, Kazakhstan)

Abstract

Understanding and examining energy markets correctly is crucial for stakeholders to attain maximum benefit and avoid risks. As a matter of fact, the volatility that occurred in energy markets and recent crises had major impacts on national economies. Dynamic connectedness relationships (DCRs) can make quite powerful predictions for both low-frequency data and limited time-series data. The objective of this study is to explicate the dynamic connectedness relationships among the BIST sustainability index, BIST 100 index, S&P Global Clean Energy index (S&P GCEI), and S&P GSCI carbon emission allowances (EUA). The daily data obtained over the period 11 April 2014–11 November 2022 were used for the research study. The DCRs among the variables used in the study were investigated by employing the time-varying parameter vector autoregressive (TVP-VAR) model. As a result of the study, the volatility from carbon emission allowances was determined to spill over to S&P GCEI, BIST 100, and BIST sustainability indexes. During the COVID-19 pandemic, significant reductions were detected in the volatility spillover (VS) from carbon emission allowances to S&P GCEI, BIST 100, and BIST sustainability indexes. Moreover, it was revealed that a weak VS existed from S&P GCEI to BIST sustainability and BIST 100 indexes. The findings reveal the importance of policymakers taking some incentive measures in EUA prices and also its role in portfolio diversification.

Suggested Citation

  • Mesut Doğan & Sutbayeva Raikhan & Nurbossynova Zhanar & Bodaukhan Gulbagda, 2023. "Analysis of Dynamic Connectedness Relationships among Clean Energy, Carbon Emission Allowance, and BIST Indexes," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6025-:d:1112193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Yonghong & Wang, Jieru & Lie, Jiayi & Mo, Bin, 2021. "Dynamic dependence nexus and causality of the renewable energy stock markets on the fossil energy markets," Energy, Elsevier, vol. 233(C).
    2. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    3. Kamal, Javed Bin & Hassan, M. Kabir, 2022. "Asymmetric connectedness between cryptocurrency environment attention index and green assets," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    4. Hammoudeh, Shawkat & Ajmi, Ahdi Noomen & Mokni, Khaled, 2020. "Relationship between green bonds and financial and environmental variables: A novel time-varying causality," Energy Economics, Elsevier, vol. 92(C).
    5. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    6. Wang, Xiong & Li, Jingyao & Ren, Xiaohang, 2022. "Asymmetric causality of economic policy uncertainty and oil volatility index on time-varying nexus of the clean energy, carbon and green bond," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Madaleno, Mara & Dogan, Eyup & Taskin, Dilvin, 2022. "A step forward on sustainability: The nexus of environmental responsibility, green technology, clean energy and green finance," Energy Economics, Elsevier, vol. 109(C).
    8. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    9. Tolliver, Clarence & Keeley, Alexander Ryota & Managi, Shunsuke, 2020. "Policy targets behind green bonds for renewable energy: Do climate commitments matter?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    10. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    11. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    12. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    13. Jose E. Gomez-Gonzalez & Jorge Hirs-Garzón & Sebastián Sanín-Restrepo, 2021. "Dynamic relations between oil and stock markets: Volatility spillovers, networks and causality," International Economics, CEPII research center, issue 165, pages 37-50.
    14. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    15. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    16. Giovanna Attanasio & Nadia Preghenella & Alberto Felice De Toni & Cinzia Battistella, 2022. "Stakeholder engagement in business models for sustainability: The stakeholder value flow model for sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 860-874, March.
    17. Wen, Fenghua & Zhao, Lili & He, Shaoyi & Yang, Guozheng, 2020. "Asymmetric relationship between carbon emission trading market and stock market: Evidences from China," Energy Economics, Elsevier, vol. 91(C).
    18. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    19. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2020. "Causality between CO2 Emissions and Stock Markets," Energies, MDPI, vol. 13(11), pages 1-14, June.
    20. Martin Lebelle & Souad Lajili Jarjir & Syrine Sassi, 2020. "Corporate Green Bond Issuances: An International Evidence," JRFM, MDPI, vol. 13(2), pages 1-21, February.
    21. Tu, Qiang & Mo, Jianlei & Liu, Zhuoran & Gong, Chunxu & Fan, Ying, 2021. "Using green finance to counteract the adverse effects of COVID-19 pandemic on renewable energy investment-The case of offshore wind power in China," Energy Policy, Elsevier, vol. 158(C).
    22. Kanamura, Takashi, 2020. "Are green bonds environmentally friendly and good performing assets?," Energy Economics, Elsevier, vol. 88(C).
    23. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    24. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    25. Monasterolo, Irene & Raberto, Marco, 2018. "The EIRIN Flow-of-funds Behavioural Model of Green Fiscal Policies and Green Sovereign Bonds," Ecological Economics, Elsevier, vol. 144(C), pages 228-243.
    26. Febi, Wulandari & Schäfer, Dorothea & Stephan, Andreas & Sun, Chen, 2018. "The impact of liquidity risk on the yield spread of green bonds," Finance Research Letters, Elsevier, vol. 27(C), pages 53-59.
    27. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Gabauer, David & Dwumfour, Richard Adjei, 2022. "Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies," Global Finance Journal, Elsevier, vol. 51(C).
    28. Tang, Dragon Yongjun & Zhang, Yupu, 2020. "Do shareholders benefit from green bonds?," Journal of Corporate Finance, Elsevier, vol. 61(C).
    29. Kocaarslan, Baris & Soytas, Ugur, 2021. "Reserve currency and the volatility of clean energy stocks: The role of uncertainty," Energy Economics, Elsevier, vol. 104(C).
    30. Jin, Yi & Gao, Xiaoyan & Wang, Min, 2021. "The financing efficiency of listed energy conservation and environmental protection firms: Evidence and implications for green finance in China," Energy Policy, Elsevier, vol. 153(C).
    31. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    32. Antonakakis, Nikolaos & Gabauer, David, 2017. "Refined Measures of Dynamic Connectedness based on TVP-VAR," MPRA Paper 78282, University Library of Munich, Germany.
    33. Zhao, Lili & Wen, Fenghua & Wang, Xiong, 2020. "Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect," Energy Economics, Elsevier, vol. 91(C).
    34. Maria Jua Bachelet & Leonardo Becchetti & Stefano Manfredonia, 2019. "The Green Bonds Premium Puzzle: The Role of Issuer Characteristics and Third-Party Verification," Sustainability, MDPI, vol. 11(4), pages 1-22, February.
    35. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    36. Mensi, Walid & Naeem, Muhammad Abubakr & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Dynamic and frequency spillovers between green bonds, oil and G7 stock markets: Implications for risk management," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 331-344.
    37. Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
    38. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    39. Thomas J. Fisher & Colin M. Gallagher, 2012. "New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 777-787, June.
    40. Souad Lajili Jarjir & Martin Lebelle & Syrine Sassi, 2020. "Corporate Green Bond Issuances: An International Evidence," Post-Print hal-03044129, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assad Ullah & Murat Tekbaş & Mesut Doğan, 2023. "The Impact of Economic Growth, Natural Resources, Urbanization and Biocapacity on the Ecological Footprint: The Case of Turkey," Sustainability, MDPI, vol. 15(17), pages 1-15, August.
    2. Jingyi Ji & Chao Li & Xinyi Ye & Yuelin Song & Jiehua Lv, 2023. "Analysis of the Spatial and Temporal Evolution of China’s Energy Carbon Emissions, Driving Mechanisms, and Decoupling Levels," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
    3. Filip Vodopić & Domagoj Vulin & Daria Karasalihović Sedlar & Lucija Jukić, 2023. "Enhancing Carbon Capture and Storage Deployment in the EU: A Sectoral Analysis of a Ton-Based Incentive Strategy," Sustainability, MDPI, vol. 15(22), pages 1-34, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiong & Li, Jingyao & Ren, Xiaohang, 2022. "Asymmetric causality of economic policy uncertainty and oil volatility index on time-varying nexus of the clean energy, carbon and green bond," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Gabauer, David & Dwumfour, Richard Adjei, 2022. "Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies," Global Finance Journal, Elsevier, vol. 51(C).
    3. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    4. Dogan, Eyup & Madaleno, Mara & Taskin, Dilvin & Tzeremes, Panayiotis, 2022. "Investigating the spillovers and connectedness between green finance and renewable energy sources," Renewable Energy, Elsevier, vol. 197(C), pages 709-722.
    5. Román Ferrer & Rafael Benítez & Vicente J. Bolós, 2021. "Interdependence between Green Financial Instruments and Major Conventional Assets: A Wavelet-Based Network Analysis," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    6. Arif, Muhammad & Hasan, Mudassar & Alawi, Suha M. & Naeem, Muhammad Abubakr, 2021. "COVID-19 and time-frequency connectedness between green and conventional financial markets," Global Finance Journal, Elsevier, vol. 49(C).
    7. Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
    8. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
    9. Ringstad, Ingrid Emilie Flessum & Tselika, Kyriaki, 2023. "Time and frequency dynamics of connectedness between green bonds, clean energy markets and carbon prices," Discussion Papers 2023/18, Norwegian School of Economics, Department of Business and Management Science.
    10. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    11. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2020. "From CIP-deviations to a market for risk premia: A dynamic investigation of cross-currency basis swaps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 69(C).
    12. David Gabauer & Sowmya Subramaniam & Rangan Gupta, 2022. "On the transmission mechanism of Asia‐Pacific yield curve characteristics," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 473-488, January.
    13. Gabauer, David & Gupta, Rangan, 2020. "Spillovers across macroeconomic, financial and real estate uncertainties: A time-varying approach," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 167-173.
    14. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan, 2019. "International monetary policy spillovers: Evidence from a time-varying parameter vector autoregression," International Review of Financial Analysis, Elsevier, vol. 65(C).
    15. Karkowska, Renata & Urjasz, Szczepan, 2023. "How does the Russian-Ukrainian war change connectedness and hedging opportunities? Comparison between dirty and clean energy markets versus global stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    16. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    17. Ioannis Chatziantoniou & David Gabauer & Hardik A. Marfatia, 2022. "Dynamic connectedness and spillovers across sectors: Evidence from the Indian stock market," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(3), pages 283-300, July.
    18. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    19. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    20. Akhtaruzzaman, Md & Banerjee, Ameet Kumar & Ghardallou, Wafa & Umar, Zaghum, 2022. "Is greenness an optimal hedge for sectoral stock indices?," Economic Modelling, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6025-:d:1112193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.