IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16000-d989162.html
   My bibliography  Save this article

Does It Help Carbon Reduction in China? A Research Paper about the Mediating Role of Production Automation Based on the Carbon Kuznets Curve

Author

Listed:
  • Panda Su

    (School of Economics and Management, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China)

  • Yu Wang

    (School of Public Administration, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China)

Abstract

As China puts forward its “carbon emissions peak and carbon neutrality” goals, how to achieve carbon reductions has become a key for China’s goal. The manufacturing industry is a significant source of carbon dioxide emissions. For a manufacturing country such as China, adjustments in various aspects of the industry would have a huge impact on its carbon emissions. As an important reform of the contemporary production mode, the process of production automation in China will inevitably affect China’s carbon emissions; therefore, the analysis of the impact of that production automation on the carbon dioxide emissions is an important basis for judging the future carbon reductions in China. Referring to the traditional study of the carbon Kuznets curve, this paper analyzes the impact of an average wage on production automation and the role of production automation in the carbon Kuznets curve (CKC). This paper proposes that production automation plays a mediating role in the process of carbon emissions, and gives a verification model of that mediating role. By analyzing the relationship between average wages and the production automation process, the U-shaped curve relationship between them was verified. By examining the relationship between carbon dioxide emissions data and the production automation industry in China, we verified that production automation plays a partial mediating role in the change of the carbon Kuznets curve. Combined with the analysis of the two parts, this paper believes that with the continuous development of China’s intelligent manufacturing industry, China’s carbon reduction prospects are more optimistic, and that there is a good industrial foundation to achieve the “carbon peaking and carbon neutrality” goals. Finally, this paper proposes policy suggestions so as to increase research investment in production automation, to help promote the application of production automation, encourage the research and application development of low-carbon technology, especially encouraging modular design, and to give full play to the role of production automation in the process of carbon neutrality in China.

Suggested Citation

  • Panda Su & Yu Wang, 2022. "Does It Help Carbon Reduction in China? A Research Paper about the Mediating Role of Production Automation Based on the Carbon Kuznets Curve," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16000-:d:989162
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Na Lu & Shuyi Feng & Ziming Liu & Weidong Wang & Hualiang Lu & Miao Wang, 2020. "The Determinants of Carbon Emissions in the Chinese Construction Industry: A Spatial Analysis," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    2. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    3. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    4. Tianling Zhang & Panda Su & Hongbing Deng, 2021. "Does the Agglomeration of Producer Services and the Market Entry of Enterprises Promote Carbon Reduction? An Empirical Analysis of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    5. Li, Zhiguo & Wang, Jie, 2022. "Spatial spillover effect of carbon emission trading on carbon emission reduction: Empirical data from pilot regions in China," Energy, Elsevier, vol. 251(C).
    6. Miura, Taiki & Tamaki, Tetsuya & Kii, Masanobu & Kajitani, Yoshio, 2021. "Efficiency by sectors in areas considering CO2 emissions: The case of Japan," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 514-528.
    7. Hitoshi Sato, 2021. "Industrialization of Developing Economies in the Global Economy with an Infectious Disease," The Developing Economies, Institute of Developing Economies, vol. 59(2), pages 126-153, June.
    8. Paul J. Burke, 2012. "Climbing the electricity ladder generates carbon Kuznets curve downturns," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(2), pages 260-279, April.
    9. Burnett, J. Wesley & Bergstrom, John C. & Wetzstein, Michael E., 2013. "Carbon dioxide emissions and economic growth in the U.S," Journal of Policy Modeling, Elsevier, vol. 35(6), pages 1014-1028.
    10. Sato, Hitoshi, 2021. "Industrialization of developing economies in the global economy with an infectious disease," IDE Discussion Papers 815, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    11. Cemal Atici, 2009. "Carbon emissions in Central and Eastern Europe: environmental Kuznets curve and implications for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 17(3), pages 155-160.
    12. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    13. Thomas Bassetti & Nikos Benos & Stelios Karagiannis, 2013. "CO 2 Emissions and Income Dynamics: What Does the Global Evidence Tell Us?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 101-125, January.
    14. Greening, Lorna A., 2004. "Effects of human behavior on aggregate carbon intensity of personal transportation: comparison of 10 OECD countries for the period 1970-1993," Energy Economics, Elsevier, vol. 26(1), pages 1-30, January.
    15. Itkonen, Juha V.A., 2012. "Problems estimating the carbon Kuznets curve," Energy, Elsevier, vol. 39(1), pages 274-280.
    16. Joseph E. Aldy, 2007. "Energy and Carbon Dynamics at Advanced Stages of Development: An Analysis of the U.S. States, 1960-1999," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 91-112.
    17. Enno Schröder & Servaas Storm, 2020. "Economic Growth and Carbon Emissions: The Road to “Hothouse Earth” is Paved with Good Intentions," International Journal of Political Economy, Taylor & Francis Journals, vol. 49(2), pages 153-173, April.
    18. Yize Yang & Xiujian Wei & Jie Wei & Xiang Gao, 2022. "Industrial Structure Upgrading, Green Total Factor Productivity and Carbon Emissions," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    19. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    20. Vieira, Leticia Canal & Longo, Mariolina & Mura, Matteo, 2021. "Are the European manufacturing and energy sectors on track for achieving net-zero emissions in 2050? An empirical analysis," Energy Policy, Elsevier, vol. 156(C).
    21. Maneka Jayasinghe & Eliyathamby A. Selvanathan, 2021. "Energy consumption, tourism, economic growth and CO2 emissions nexus in India," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 26(2), pages 361-380, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Sharma, Rajesh & Sinha, Avik & Jiao, Zhilun, 2021. "Analyzing nonlinear impact of economic growth drivers on CO2 emissions: Designing an SDG framework for India," Energy Policy, Elsevier, vol. 148(PB).
    2. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    3. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    4. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    5. Salahuddin, Mohammad & Gow, Jeff, 2014. "Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries," Energy, Elsevier, vol. 73(C), pages 44-58.
    6. Jaforullah, Mohammad & King, Alan, 2017. "The econometric consequences of an energy consumption variable in a model of CO2 emissions," Energy Economics, Elsevier, vol. 63(C), pages 84-91.
    7. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    8. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    9. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    10. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    11. Arminen, Heli & Menegaki, Angeliki N., 2019. "Corruption, climate and the energy-environment-growth nexus," Energy Economics, Elsevier, vol. 80(C), pages 621-634.
    12. Munir, Qaiser & Lean, Hooi Hooi & Smyth, Russell, 2020. "CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: A cross-sectional dependence approach," Energy Economics, Elsevier, vol. 85(C).
    13. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    14. Ali Raza Cheema & Attiya Yasmin Javid, 2015. "The Relationship between Disaggregate Energy Consumption, Economic Growth and Environment for Asian Developing Economies," PIDE-Working Papers 2015:115, Pakistan Institute of Development Economics.
    15. Nguyen Thi Phuong Thu & Le Mai Huong & Vu Ngoc Xuan, 2022. "Factors Affecting Environmental Pollution for Sustainable Development Goals—Evidence from Asian Countries," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    16. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    17. Bella, Giovanni & Massidda, Carla & Mattana, Paolo, 2014. "The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries," Journal of Policy Modeling, Elsevier, vol. 36(6), pages 970-985.
    18. Muhammad, Shahbaz & Lean, Hooi Hooi & Muhammad, Shahbaz Shabbir, 2011. "Environmental Kuznets Curve and the role of energy consumption in Pakistan," MPRA Paper 34929, University Library of Munich, Germany, revised 22 Nov 2011.
    19. Panagiotis Fotis & Michael Polemis, 2018. "Sustainable development, environmental policy and renewable energy use: A dynamic panel data approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 26(6), pages 726-740, November.
    20. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16000-:d:989162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.