IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13267-d943150.html
   My bibliography  Save this article

Vertical Transportation System Power Usage: Behavioural Case Study of Regulated Buildings in Bangkok

Author

Listed:
  • Supapradit Marsong

    (Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand)

  • Yuttana Kongjeen

    (Intelligent Power System and Energy Research (IPER), Department of Electrical Engineering, Faculty of Engineering and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand)

  • Boonyang Plangklang

    (Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand)

Abstract

Sustainable urban development worldwide is crucial for the development of living spaces in high-rise buildings and infrastructures, which leads to the inevitability of increased energy consumption and demand of vertical transportation systems. The evaluation of the energy consumption of transportation systems is needed to verify and analyse the power usage related to traffic demands and patterns. In addition, efficient vertical transportation systems are central to the formulation of more sustainable cities. Therefore, this trend represents a substantial portion of the overall energy consumption of the building types. The benchmarking of the energy needs of the vertical transportation systems in five different building types via the comparison of granular load profile patterns (in conjunction with population densities) to the energy consumed was conducted, and it will be used to infer some impactful design strategies for the future. This study demonstrated a systematic approach to determine the power usage patterns in vertical transportation systems by actual measurement and traffic data collection from elevator monitoring. This may be used to develop a prediction for other cases in different types of installed vertical transportation systems. Therefore, the power usage of the vertical transportation systems can be used to determine the correlation between energy consumption and load pattern based on building characteristics and the overall energy consumption of each presented system.

Suggested Citation

  • Supapradit Marsong & Yuttana Kongjeen & Boonyang Plangklang, 2022. "Vertical Transportation System Power Usage: Behavioural Case Study of Regulated Buildings in Bangkok," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13267-:d:943150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongming Zhang & Zhe Yan & Feng Yuan & Jiawei Yao & Bao Ding, 2018. "A Novel Reconstruction Approach to Elevator Energy Conservation Based on a DC Micro-Grid in High-Rise Buildings," Energies, MDPI, vol. 12(1), pages 1-17, December.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Chung, William & Kam, M.S. & Ip, C.Y., 2011. "A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007," Applied Energy, Elsevier, vol. 88(12), pages 5180-5187.
    4. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Estimation and Validation of Energy Consumption in UK Existing Hotel Building Using Dynamic Simulation Software," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    5. Zhao, Jing & Xin, Yajuan & Tong, Dingding, 2012. "Energy consumption quota of public buildings based on statistical analysis," Energy Policy, Elsevier, vol. 43(C), pages 362-370.
    6. Xuchao, Wu & Priyadarsini, Rajagopalan & Siew Eang, Lee, 2010. "Benchmarking energy use and greenhouse gas emissions in Singapore's hotel industry," Energy Policy, Elsevier, vol. 38(8), pages 4520-4527, August.
    7. Hong, Tianzhen & Li, Cheng & Yan, Da, 2015. "Updates to the China Design Standard for Energy Efficiency in public buildings," Energy Policy, Elsevier, vol. 87(C), pages 187-198.
    8. Zografakis, Nikolaos & Gillas, Konstantinos & Pollaki, Antrianna & Profylienou, Maroulitsa & Bounialetou, Fanouria & Tsagarakis, Konstantinos P., 2011. "Assessment of practices and technologies of energy saving and renewable energy sources in hotels in Crete," Renewable Energy, Elsevier, vol. 36(5), pages 1323-1328.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    2. Nikolaou, Ioannis E. & Vitouladitis, Haris & Tsagarakis, Konstantinos P., 2012. "The willingness of hoteliers to adopt proactive management practices to face energy issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2988-2993.
    3. Hongguang Nie & René Kemp & Véronique Vasseur, 2020. "Exploring the Changing Gap of Residential Energy Consumption per Capita in China and the Netherlands: A Comparative Analysis of Driving Forces," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    4. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    5. Changjian Wang & Fei Wang & Gengzhi Huang & Yang Wang & Xinlin Zhang & Yuyao Ye & Xiaojie Lin & Zhongwu Zhang, 2021. "Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    6. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    7. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    8. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    9. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    10. Juan Luo & Chong Xu & Boyu Yang & Xiaoyu Chen & Yinyin Wu, 2022. "Quantitative Analysis of China’s Carbon Emissions Trading Policies: Perspectives of Policy Content Validity and Carbon Emissions Reduction Effect," Energies, MDPI, vol. 15(14), pages 1-20, July.
    11. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    12. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    13. Jiandong Chen & Ping Wang & Jixian Zhou & Malin Song & Xinyue Zhang, 2022. "Influencing factors and efficiency of funds in humanitarian supply chains: the case of Chinese rural minimum living security funds," Annals of Operations Research, Springer, vol. 319(1), pages 413-438, December.
    14. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    15. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    16. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Amor, Mourad Ben & Pineau, Pierre-Olivier & Gaudreault, Caroline & Samson, Réjean, 2011. "Electricity trade and GHG emissions: Assessment of Quebec's hydropower in the Northeastern American market (2006-2008)," Energy Policy, Elsevier, vol. 39(3), pages 1711-1721, March.
    18. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    19. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    20. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13267-:d:943150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.