IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10439-d894668.html
   My bibliography  Save this article

Assessing the Impact of Fossil Fuel Prices on Renewable Energy in China Using the Novel Dynamic ARDL Simulations Approach

Author

Listed:
  • Ousama Ben-Salha

    (Department of Economics, College of Business Administration, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
    Department of Economics, ISTLS, University of Sousse, Sousse 4023, Tunisia
    Economic Research Forum, Cairo 12311, Egypt)

  • Abdelaziz Hakimi

    (V.P.N.C Lab, Department of Management, Faculty of Law, Economics and Management of Jendouba, University of Jendouba, Jendouba 8189, Tunisia)

  • Taha Zaghdoudi

    (Management Information Systems Department, Applied College, University of Ha’il, Hail City P.O. Box 2440, Saudi Arabia
    LR-LEFA, IHEC, University of Carthage, Carthage 2085, Tunisia)

  • Hassan Soltani

    (Department of Administration, College of Science and Arts in Balgarn, University of Bisha, Bisha P.O. Box 199, Saudi Arabia)

  • Mariem Nsaibi

    (Management Information Systems Department, Applied College, University of Ha’il, Hail City P.O. Box 2440, Saudi Arabia)

Abstract

The past few decades have been marked by a gradual but steady increase in the reliance on renewable energy. In this study, we examined whether the prices of fossil fuels, namely, oil, coal, and natural gas, have affected renewable energy consumption in China during the period 1980–2018. To this end, we employed the novel dynamic Autoregressive Distributed Lag simulations approach. In the light of the empirical investigation, some intriguing conclusions have been drawn. We found strong evidence of the cointegrating relationship between the prices of all fossil fuels and renewable energy consumption. Furthermore, rising oil, coal, and natural gas prices resulted in increased renewable energy consumption in the long run, confirming that renewable energy sources can substitute fossil fuel energy only in the long run. Nevertheless, there is no evidence of significant effects in the short run. When considering the presence of structural breaks, the findings confirm the robustness of the dynamic ARDL simulations, as we conclude that fossil fuel prices positively affect renewable energy consumption only in the long run.

Suggested Citation

  • Ousama Ben-Salha & Abdelaziz Hakimi & Taha Zaghdoudi & Hassan Soltani & Mariem Nsaibi, 2022. "Assessing the Impact of Fossil Fuel Prices on Renewable Energy in China Using the Novel Dynamic ARDL Simulations Approach," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10439-:d:894668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Westerlund, Joakim & Edgerton, David L., 2007. "A panel bootstrap cointegration test," Economics Letters, Elsevier, vol. 97(3), pages 185-190, December.
    2. Przychodzen, Wojciech & Przychodzen, Justyna, 2020. "Determinants of renewable energy production in transition economies: A panel data approach," Energy, Elsevier, vol. 191(C).
    3. Olivier Damette & Antonio C. Marques, 2019. "Renewable energy drivers: a panel cointegration approach," Applied Economics, Taylor & Francis Journals, vol. 51(26), pages 2793-2806, June.
    4. Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012. "Energy technology patents–CO2 emissions nexus: An empirical analysis from China," Energy Policy, Elsevier, vol. 42(C), pages 248-260.
    5. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    6. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    7. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    8. Yurong Zhao & Yingying Zhang & Weixian Wei, 2021. "Quantifying international oil price shocks on renewable energy development in China," Applied Economics, Taylor & Francis Journals, vol. 53(3), pages 329-344, January.
    9. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    10. Bamati, Narges & Raoofi, Ali, 2020. "Development level and the impact of technological factor on renewable energy production," Renewable Energy, Elsevier, vol. 151(C), pages 946-955.
    11. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    12. Andrew Q. Philips, 2018. "Have Your Cake and Eat It Too? Cointegration and Dynamic Inference from Autoregressive Distributed Lag Models," American Journal of Political Science, John Wiley & Sons, vol. 62(1), pages 230-244, January.
    13. Rıdvan Karacan & Shahriyar Mukhtarov & İsmail Barış & Aykut İşleyen & Mehmet Emin Yardımcı, 2021. "The Impact of Oil Price on Transition toward Renewable Energy Consumption? Evidence from Russia," Energies, MDPI, vol. 14(10), pages 1-14, May.
    14. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    15. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    16. Sam, Chung Yan & McNown, Robert & Goh, Soo Khoon, 2019. "An augmented autoregressive distributed lag bounds test for cointegration," Economic Modelling, Elsevier, vol. 80(C), pages 130-141.
    17. Wen Jun & Muhammad Zakaria & Syed Jawad Hussain Shahzad & Hamid Mahmood, 2018. "Effect of FDI on Pollution in China: New Insights Based on Wavelet Approach," Sustainability, MDPI, vol. 10(11), pages 1-20, October.
    18. Sebastian Kripfganz & Daniel C. Schneider, 2020. "Response Surface Regressions for Critical Value Bounds and Approximate p‐values in Equilibrium Correction Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1456-1481, December.
    19. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    20. Pedroni, Peter, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    21. Akintande, Olalekan J. & Olubusoye, Olusanya E. & Adenikinju, Adeola F. & Olanrewaju, Busayo T., 2020. "Modeling the determinants of renewable energy consumption: Evidence from the five most populous nations in Africa," Energy, Elsevier, vol. 206(C).
    22. Zhao, Pan & Lu, Zhou & Fang, Jianchun & Paramati, Sudharshan Reddy & Jiang, Kai, 2020. "Determinants of renewable and non-renewable energy demand in China," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 202-209.
    23. Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
    24. Soren Jordan & Andrew Q. Philips, 2018. "Cointegration testing and dynamic simulations of autoregressive distributed lag modelsJournal: Stata Journal," Stata Journal, StataCorp LP, vol. 18(4), pages 902-923, December.
    25. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    26. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
    27. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
    28. Ben Salha Ousama, 2013. "Economic Globalization, Wages and Wage Inequality in Tunisia: An ARDL Bounds Testing Approach," Review of Middle East Economics and Finance, De Gruyter, vol. 9(3), pages 321-356, December.
    29. Nicholas Apergis & James E. Payne, 2014. "The causal dynamics between renewable energy, real GDP, emissions and oil prices: evidence from OECD countries," Applied Economics, Taylor & Francis Journals, vol. 46(36), pages 4519-4525, December.
    30. Miguel Dorta & Gustavo Sanchez, 2021. "Bootstrap unit-root test for random walk with drift: The bsrwalkdrift command," Stata Journal, StataCorp LP, vol. 21(1), pages 39-50, March.
    31. Guo, Yaoqi & Yu, Chenxi & Zhang, Hongwei & Cheng, Hui, 2021. "Asymmetric between oil prices and renewable energy consumption in the G7 countries," Energy, Elsevier, vol. 226(C).
    32. Doytch, Nadia & Narayan, Seema, 2016. "Does FDI influence renewable energy consumption? An analysis of sectoral FDI impact on renewable and non-renewable industrial energy consumption," Energy Economics, Elsevier, vol. 54(C), pages 291-301.
    33. Marius-Corneliu Marinaș & Marin Dinu & Aura-Gabriela Socol & Cristian Socol, 2018. "Renewable energy consumption and economic growth. Causality relationship in Central and Eastern European countries," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-29, October.
    34. Abbasi, Kashif Raza & Shahbaz, Muhammad & Jiao, Zhilun & Tufail, Muhammad, 2021. "How energy consumption, industrial growth, urbanization, and CO2 emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucio Laureti & Alessandro Massaro & Alberto Costantiello & Angelo Leogrande, 2023. "The Impact of Renewable Electricity Output on Sustainability in the Context of Circular Economy: A Global Perspective," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    2. Azam Ghezelbash & Mitra Seyedzadeh & Vahid Khaligh & Jay Liu, 2023. "Impacts of Green Energy Expansion and Gas Import Reduction on South Korea’s Economic Growth: A System Dynamics Approach," Sustainability, MDPI, vol. 15(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    2. Ibrahiem, Dalia M. & Hanafy, Shaimaa A., 2021. "Do energy security and environmental quality contribute to renewable energy? The role of trade openness and energy use in North African countries," Renewable Energy, Elsevier, vol. 179(C), pages 667-678.
    3. Justyna Godawska & Joanna Wyrobek, 2021. "The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries," Energies, MDPI, vol. 14(19), pages 1-23, September.
    4. Ghazouani, Tarek, 2022. "Dynamic impact of globalization on renewable energy consumption: Non-parametric modelling evidence," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    5. Nusair, Salah A., 2019. "Oil price and inflation dynamics in the Gulf Cooperation Council countries," Energy, Elsevier, vol. 181(C), pages 997-1011.
    6. Somoye, Oluwatoyin Abidemi & Ozdeser, Huseyin & Seraj, Mehdi, 2022. "Modeling the determinants of renewable energy consumption in Nigeria: Evidence from Autoregressive Distributed Lagged in error correction approach," Renewable Energy, Elsevier, vol. 190(C), pages 606-616.
    7. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    8. Carfora, A. & Pansini, R.V. & Scandurra, G., 2021. "The role of environmental taxes and public policies in supporting RES investments in EU countries: Barriers and mimicking effects," Energy Policy, Elsevier, vol. 149(C).
    9. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
    10. Qamruzzaman, Md & Karim, Salma & Jahan, Ishrat, 2022. "Nexus between economic policy uncertainty, foreign direct investment, government debt and renewable energy consumption in 13 top oil importing nations: Evidence from the symmetric and asymmetric inves," Renewable Energy, Elsevier, vol. 195(C), pages 121-136.
    11. Zhang, Rui & Sharma, Rajesh & Tan, Zhixiong & Kautish, Pradeep, 2022. "Do export diversification and stock market development drive carbon intensity? The role of renewable energy solutions in top carbon emitter countries," Renewable Energy, Elsevier, vol. 185(C), pages 1318-1328.
    12. Zhou, Runyu & Abbasi, Kashif Raza & Salem, Sultan & Almulhim, Abdulaziz.I. & Alvarado, Rafael, 2022. "Do natural resources, economic growth, human capital, and urbanization affect the ecological footprint? A modified dynamic ARDL and KRLS approach," Resources Policy, Elsevier, vol. 78(C).
    13. Abbasi, Kashif Raza & Adedoyin, Festus Fatai & Abbas, Jaffar & Hussain, Khadim, 2021. "The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation," Renewable Energy, Elsevier, vol. 180(C), pages 1439-1450.
    14. Vural, Gulfer, 2021. "Analyzing the impacts of economic growth, pollution, technological innovation and trade on renewable energy production in selected Latin American countries," Renewable Energy, Elsevier, vol. 171(C), pages 210-216.
    15. António Afonso & Florence Huart & João Tovar Jalles & Piotr Stanek, 2019. "Assessing the sustainability of external imbalances in the European Union," The World Economy, Wiley Blackwell, vol. 42(2), pages 320-348, February.
    16. Sweidan, Osama D., 2021. "Is the geopolitical risk an incentive or obstacle to renewable energy deployment? Evidence from a panel analysis," Renewable Energy, Elsevier, vol. 178(C), pages 377-384.
    17. Uzar, Umut, 2020. "Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption?," Renewable Energy, Elsevier, vol. 155(C), pages 591-603.
    18. Angulo, Ana & Burridge, Peter & Mur, Jesús, 2018. "Testing for breaks in the weighting matrix," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 115-129.
    19. Muhammad Jamil & Farhan Ahmed & Gouranga Chandra Debnath & Štefan Bojnec, 2022. "Transition to Renewable Energy Production in the United States: The Role of Monetary, Fiscal, and Trade Policy Uncertainty," Energies, MDPI, vol. 15(13), pages 1-15, June.
    20. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10439-:d:894668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.