IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp377-384.html
   My bibliography  Save this article

Is the geopolitical risk an incentive or obstacle to renewable energy deployment? Evidence from a panel analysis

Author

Listed:
  • Sweidan, Osama D.

Abstract

This study explores the effect of geopolitical risk on renewable energy deployment, assuming that geopolitical uncertainty stimulates nations to be independent and rely on their renewable energy sources in order to reduce the geopolitical risk concomitant to fossil fuel inflows. The current paper's data sample covers 10 net crude oil importer countries during the period 1985–2017. It employs panel cointegration analysis and estimate an autoregressive distributed lag model. The results show that geopolitical risk has a significant and positive effect on renewable energy diffusion. Therefore, this work determines that it is an incentive, not an obstacle, to renewable energy deployment. The present study's policy implication is that renewable energy development is expected to increase if the geopolitical risk rises, all else being equal.

Suggested Citation

  • Sweidan, Osama D., 2021. "Is the geopolitical risk an incentive or obstacle to renewable energy deployment? Evidence from a panel analysis," Renewable Energy, Elsevier, vol. 178(C), pages 377-384.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:377-384
    DOI: 10.1016/j.renene.2021.06.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    2. Antonakakis, Nikolaos & Gupta, Rangan & Kollias, Christos & Papadamou, Stephanos, 2017. "Geopolitical risks and the oil-stock nexus over 1899–2016," Finance Research Letters, Elsevier, vol. 23(C), pages 165-173.
    3. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    4. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    5. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    6. Aisen, Ari & Veiga, Francisco José, 2013. "How does political instability affect economic growth?," European Journal of Political Economy, Elsevier, vol. 29(C), pages 151-167.
    7. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    8. Can Şener, Şerife Elif & Sharp, Julia L. & Anctil, Annick, 2018. "Factors impacting diverging paths of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2335-2342.
    9. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    10. Sanya Carley & Elizabeth Baldwin & Lauren M. MacLean & Jennifer N. Brass, 2017. "Global Expansion of Renewable Energy Generation: An Analysis of Policy Instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 397-440, October.
    11. Chak Hung Jack Cheng & Ching-Wai (Jeremy) Chiu, 2018. "How important are global geopolitical risks to emerging countries?," International Economics, CEPII research center, issue 156, pages 305-325.
    12. Jaforullah, Mohammad & King, Alan, 2015. "Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence," Energy Economics, Elsevier, vol. 49(C), pages 711-717.
    13. Uzar, Umut, 2020. "Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption?," Renewable Energy, Elsevier, vol. 155(C), pages 591-603.
    14. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    15. Selmi, Refk & Bouoiyour, Jamal, 2020. "Arab geopolitics in turmoil: Implications of Qatar-Gulf crisis for business," International Economics, Elsevier, vol. 161(C), pages 100-119.
    16. Jong-A-Pin, Richard, 2009. "On the measurement of political instability and its impact on economic growth," European Journal of Political Economy, Elsevier, vol. 25(1), pages 15-29, March.
    17. Jaroslava Hlouskova & Martin Wagner, 2006. "The Performance of Panel Unit Root and Stationarity Tests: Results from a Large Scale Simulation Study," Econometric Reviews, Taylor & Francis Journals, vol. 25(1), pages 85-116.
    18. Joakim Westerlund, 2005. "New Simple Tests for Panel Cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 297-316.
    19. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    20. Pedroni, Peter, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    21. Lichao Wu & David C. Broadstock, 2015. "Does economic, financial and institutional development matter for renewable energy consumption? Evidence from emerging economies," International Journal of Economic Policy in Emerging Economies, Inderscience Enterprises Ltd, vol. 8(1), pages 20-39.
    22. Darmani, Anna & Arvidsson, Niklas & Hidalgo, Antonio & Albors, Jose., 2014. "What drives the development of renewable energy technologies? Toward a typology for the systemic drivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 834-847.
    23. Cadoret, Isabelle & Padovano, Fabio, 2016. "The political drivers of renewable energies policies," Energy Economics, Elsevier, vol. 56(C), pages 261-269.
    24. Zeb, Raheel & Salar, Laleena & Awan, Usama & Zaman, Khalid & Shahbaz, Muhammad, 2014. "Causal links between renewable energy, environmental degradation and economic growth in selected SAARC countries: Progress towards green economy," Renewable Energy, Elsevier, vol. 71(C), pages 123-132.
    25. Zhao, Yong & Tang, Kam Ki & Wang, Li-li, 2013. "Do renewable electricity policies promote renewable electricity generation? Evidence from panel data," Energy Policy, Elsevier, vol. 62(C), pages 887-897.
    26. Sadorsky, Perry, 2009. "Renewable energy consumption and income in emerging economies," Energy Policy, Elsevier, vol. 37(10), pages 4021-4028, October.
    27. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    28. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    29. Nicholas Apergis & Sofia Eleftheriou, 2015. "Renewable Energy Consumption, Political And Institutional Factors: Evidence From A Group Of European, Asian And Latin American Countries," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 60(01), pages 1-19.
    30. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    31. Brunnschweiler, Christa N., 2010. "Finance for renewable energy: an empirical analysis of developing and transition economies," Environment and Development Economics, Cambridge University Press, vol. 15(3), pages 241-274, June.
    32. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    33. Chang, Ting-Huan & Huang, Chien-Ming & Lee, Ming-Chih, 2009. "Threshold effect of the economic growth rate on the renewable energy development from a change in energy price: Evidence from OECD countries," Energy Policy, Elsevier, vol. 37(12), pages 5796-5802, December.
    34. Vakulchuk, Roman & Overland, Indra & Scholten, Daniel, 2020. "Renewable energy and geopolitics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    35. Marques, António Cardoso & Fuinhas, José Alberto, 2011. "Drivers promoting renewable energy: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1601-1608, April.
    36. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Weilong & Han, Mengyao, 2023. "Mapping renewable energy transition worldwide: Gravity trajectory, contribution decomposition and income levels," Renewable Energy, Elsevier, vol. 206(C), pages 1265-1274.
    2. Osama D. Sweidan, 2023. "Geopolitical Risk and Income Inequality: Evidence from the US Economy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 169(1), pages 575-597, September.
    3. Zhang, Hongsheng & Liu, Xingang & Hao, Ruijun & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance study on gas-steam cogeneration systems with different configurations based on condensed waste heat utilization," Energy, Elsevier, vol. 250(C).
    4. Wang, Shanyong & Wang, Jing & Wang, Wenfu, 2023. "Do geopolitical risks facilitate the global energy transition? Evidence from 39 countries in the world," Resources Policy, Elsevier, vol. 85(PB).
    5. Li, Zheng-Zheng & Meng, Qin & Zhang, Linling & Lobont, Oana-Ramona & Shen, Yijuan, 2023. "How do rare earth prices respond to economic and geopolitical factors?," Resources Policy, Elsevier, vol. 85(PA).
    6. Sweidan, Osama D. & Elbargathi, Khadiga, 2022. "The effect of oil rent on economic development in Saudi Arabia: Comparing the role of globalization and the international geopolitical risk," Resources Policy, Elsevier, vol. 75(C).
    7. Mohd Ziaur Rehman & Shabeer Khan & Uzair Abdullah Khan & Wadi B. Alonazi & Abul Ala Noman, 2023. "How Do Global Uncertainties Spillovers Affect Leading Renewable Energy Indices? Evidence from the Network Connectedness Approach," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    8. Osama D. Sweidan, 2023. "The Effect of Geopolitical Risk on Income Inequality: Evidence from a Panel Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 47-66, June.
    9. Floros Flouros & Victoria Pistikou & Vasilios Plakandaras, 2022. "Geopolitical Risk as a Determinant of Renewable Energy Investments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    10. Ferreira, João J. & Gomes, Sofia & Lopes, João M. & Zhang, Justin Z., 2023. "Ticking time bombs: The MENA and SSA regions' geopolitical risks," Resources Policy, Elsevier, vol. 85(PA).
    11. Sweidan, Osama D. & Elbargathi, Khadiga, 2023. "Economic diversification in Saudi Arabia: Comparing the impact of oil prices, geopolitical risk, and government expenditures," International Economics, Elsevier, vol. 175(C), pages 13-24.
    12. Wang, Kai-Hua & Wen, Cui-Ping & Liu, Hong-Wen & Liu, Lu, 2023. "Promotion or hindrance? Exploring the bidirectional causality between geopolitical risk and green bonds from an energy perspective," Resources Policy, Elsevier, vol. 85(PB).
    13. Hille, Erik, 2023. "Europe's energy crisis: Are geopolitical risks in source countries of fossil fuels accelerating the transition to renewable energy?," Energy Economics, Elsevier, vol. 127(PA).
    14. Nguyen, Trang Thi Thuy & Pham, Binh Thai & Sala, Hector, 2022. "Being an emerging economy: To what extent do geopolitical risks hamper technology and FDI inflows?," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 728-746.
    15. Lee, Chi-Chuan & Zhang, Jian & Hou, Shanshuai, 2023. "The impact of regional renewable energy development on environmental sustainability in China," Resources Policy, Elsevier, vol. 80(C).
    16. Olanipekun, Ifedolapo Olabisi & Ozkan, Oktay & Olasehinde-Williams, Godwin, 2023. "Is renewable energy use lowering resource-related uncertainties?," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    2. Ibrahiem, Dalia M. & Hanafy, Shaimaa A., 2021. "Do energy security and environmental quality contribute to renewable energy? The role of trade openness and energy use in North African countries," Renewable Energy, Elsevier, vol. 179(C), pages 667-678.
    3. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    4. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    6. Gozgor, Giray & Mahalik, Mantu Kumar & Demir, Ender & Padhan, Hemachandra, 2020. "The impact of economic globalization on renewable energy in the OECD countries," Energy Policy, Elsevier, vol. 139(C).
    7. Apergis, Nicholas & Pinar, Mehmet, 2021. "The role of party polarization in renewable energy consumption: Fresh evidence across the EU countries," Energy Policy, Elsevier, vol. 157(C).
    8. Li, Raymond & Lee, Hazel, 2022. "The role of energy prices and economic growth in renewable energy capacity expansion – Evidence from OECD Europe," Renewable Energy, Elsevier, vol. 189(C), pages 435-443.
    9. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2023. "The effects of financial institutions on the green energy transition: A cross-sectional panel study," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 524-542.
    10. Kahia, Montassar & Aïssa, Mohamed Safouane Ben & Lanouar, Charfeddine, 2017. "Renewable and non-renewable energy use - economic growth nexus: The case of MENA Net Oil Importing Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 127-140.
    11. Escoffier, Margaux & Hache, Emmanuel & Mignon, Valérie & Paris, Anthony, 2021. "Determinants of solar photovoltaic deployment in the electricity mix: Do oil prices really matter?," Energy Economics, Elsevier, vol. 97(C).
    12. Lin, Boqiang & Omoju, Oluwasola E., 2017. "Focusing on the right targets: Economic factors driving non-hydro renewable energy transition," Renewable Energy, Elsevier, vol. 113(C), pages 52-63.
    13. Justyna Godawska & Joanna Wyrobek, 2021. "The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries," Energies, MDPI, vol. 14(19), pages 1-23, September.
    14. Marra, Alessandro & Colantonio, Emiliano, 2021. "The path to renewable energy consumption in the European Union through drivers and barriers: A panel vector autoregressive approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    15. Uzar, Umut, 2020. "Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption?," Renewable Energy, Elsevier, vol. 155(C), pages 591-603.
    16. Atif Maqbool Khan & Jacek Kwiatkowski & Magdalena Osińska & Marcin Błażejowski, 2021. "Factors of Renewable Energy Consumption in the European Countries—The Bayesian Averaging Classical Estimates Approach," Energies, MDPI, vol. 14(22), pages 1-24, November.
    17. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    18. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "Output, renewable and non-renewable energy consumption and international trade: Evidence from a panel of 69 countries," Renewable Energy, Elsevier, vol. 83(C), pages 799-808.
    19. Vural, Gulfer, 2021. "Analyzing the impacts of economic growth, pollution, technological innovation and trade on renewable energy production in selected Latin American countries," Renewable Energy, Elsevier, vol. 171(C), pages 210-216.
    20. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.

    More about this item

    Keywords

    Renewable energy spread; Renewable energy incentives; Renewable energy obstacle; Energy policy; Panel analysis;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:377-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.