IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6015-d816362.html
   My bibliography  Save this article

A Configurational Analysis of Family Farm Management Efficiency: Evidence from China

Author

Listed:
  • Wencheng Li

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Lei Wang

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Qi Wan

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Weijia You

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

  • Shaowen Zhang

    (School of Economics and Management, Beijing Forestry University, Beijing 100083, China)

Abstract

Family farms are the “most-desirable”; new-style agricultural production and management entities in China at this stage, as well as their production behaviors, play an important role in achieving sustainability in agricultural development. The scientific evaluation of family farm management efficiency and the identification of an effective path to the high efficiency of family farms with different resource endowments are critical for family farms to transform from quantitative growth to qualitative improvement and develop in a sustainable and healthy way. Based on the data from a rural fixed observation point of the Chinese Ministry of Agriculture and Rural Affairs, this study randomly selected representatives from 532 family farms from 27 provinces, municipalities, and autonomous regions in China as research objects; calculated their total factor productivity based on the DEA model; and employed the Qualitative Comparative Analysis (QCA) method to identify the configuration models for a high total factor productivity, which combines the factors of land investment, capital investment, labor investment, education level of farm leaders, land transfer years, the introduction of new technology and new equipment, and financial support. It is found that the average efficiency of family farms in China is not high yet, and both the pure technical efficiency and scale efficiency have great room for improvement. The efficiency of family farms is not determined by one single condition, but by the combinations of multiple factors. The introduction of new technology and new equipment, long land transfer period, high input of production and labor, and financial support are the driving forces to improve the efficiency of family farms. This demonstrates that although the current family farms are still in the cultivation stage of capital and labor-intensive investment, they do not mainly rely on traditional agricultural productions such as labor to achieve high efficiency. The managerial implications are as follows. First, the strategy of intensive and efficient management instead of the blind expansion of land scale should be considered, the full play to the role of family labor while controlling the scale of employees is highly suggested. Second, attention should be paid to the accumulation of the human capital of family farm practitioners, which implies that more highly educated people for family farm management, as well as high-technical-skilled farm operators, should be employed. Third, it is necessary to create a good institutional environment for the development of family farms and to increase financial support such as credit loans for family farms.

Suggested Citation

  • Wencheng Li & Lei Wang & Qi Wan & Weijia You & Shaowen Zhang, 2022. "A Configurational Analysis of Family Farm Management Efficiency: Evidence from China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6015-:d:816362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Imori, Denise & Guilhoto, Joaquim José Martins & Postali, Fernando Antonio Slaibe, 2012. "Production efficiency of family farms and business farms in the Brazilian regions," MPRA Paper 46995, University Library of Munich, Germany.
    2. Madau, Fabio A., 2015. "Technical and Scale Efficiency in the Italian Citrus Farming: Comparison between SFA and DEA Approaches," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 16(2), pages 1-13.
    3. Kislev, Yoav & Peterson, Willis, 1982. "Prices, Technology, and Farm Size," Journal of Political Economy, University of Chicago Press, vol. 90(3), pages 578-595, June.
    4. Laure Latruffe & Sophia Davidova & Kelvin Balcombe, 2008. "Productivity change in Polish agriculture: an illustration of a bootstrapping procedure applied to Malmquist indices," Post-Communist Economies, Taylor & Francis Journals, vol. 20(4), pages 449-460.
    5. Helfand, Steven M. & Levine, Edward S., 2004. "Farm size and the determinants of productive efficiency in the Brazilian Center-West," Agricultural Economics, Blackwell, vol. 31(2-3), pages 241-249, December.
    6. Dethier, Jean-Jacques & Effenberger, Alexandra, 2012. "Agriculture and development: A brief review of the literature," Economic Systems, Elsevier, vol. 36(2), pages 175-205.
    7. Barrett, Christopher B. & Bellemare, Marc F. & Hou, Janet Y., 2010. "Reconsidering Conventional Explanations of the Inverse Productivity-Size Relationship," World Development, Elsevier, vol. 38(1), pages 88-97, January.
    8. Carletto, Calogero & Savastano, Sara & Zezza, Alberto, 2013. "Fact or artifact: The impact of measurement errors on the farm size–productivity relationship," Journal of Development Economics, Elsevier, vol. 103(C), pages 254-261.
    9. Townsend, R. F. & Kirsten, J. & Vink, N., 1998. "Farm size, productivity and returns to scale in agriculture revisited: a case study of wine producers in South Africa," Agricultural Economics, Blackwell, vol. 19(1-2), pages 175-180, September.
    10. Holden, Stein & Fisher, Monica, 2013. "Can area measurement error explain the inverse farm size productivity relationship?," CLTS Working Papers 12/13, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 10 Oct 2019.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Shenggen Fan & Connie Chan‐Kang, 2005. "Is small beautiful? Farm size, productivity, and poverty in Asian agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 135-146, January.
    13. Zhigang Chen & Qianyue Meng & Kaixin Yan & Rongwei Xu, 2022. "The Analysis of Family Farm Efficiency and Its Influencing Factors: Evidence from Rural China," Land, MDPI, vol. 11(4), pages 1-19, March.
    14. Srijit Mishra, 2007. "Agrarian Scenario in Post-reform India - A Story of Distress, Despair and Death," Development Economics Working Papers 22338, East Asian Bureau of Economic Research.
    15. Renato Villano & Euan Fleming, 2006. "Technical Inefficiency and Production Risk in Rice Farming: Evidence from Central Luzon Philippines," Asian Economic Journal, East Asian Economic Association, vol. 20(1), pages 29-46, March.
    16. Bojnec, Stefan & Latruffe, Laure, 2007. "Farm Size and Efficiency: The Case of Slovenia," 100th Seminar, June 21-23, 2007, Novi Sad, Serbia and Montenegro 162391, European Association of Agricultural Economists.
    17. Munir Ahmad & Ghulam Mustafa Chaudhry & Mohammad Iqbal, 2002. "Wheat Productivity, Efficiency, and Sustainability: A Stochastic Production Frontier Analysis," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 41(4), pages 643-663.
    18. Stefan Bäckman & K.M. Zahidul Islam & John Sumelius, 2011. "Determinants of Technical Efficiency of Rice Farms in North-Central and North-Western Regions in Bangladesh," Journal of Developing Areas, Tennessee State University, College of Business, vol. 45(1), pages 73-94, July-Dece.
    19. Kumbhakar, Subal C & Biswas, Basudeb & Bailey, DeeVon, 1989. "A Study of Economic Efficiency of Utah Dairy Farmers: A System Approach," The Review of Economics and Statistics, MIT Press, vol. 71(4), pages 595-604, November.
    20. Kim, Sangil & Park, Keon Chul, 2021. "Government funded R&D collaboration and it's impact on SME's business performance," Journal of Informetrics, Elsevier, vol. 15(3).
    21. Cornia, Giovanni Andrea, 1985. "Farm size, land yields and the agricultural production function: An analysis for fifteen developing countries," World Development, Elsevier, vol. 13(4), pages 513-534, April.
    22. Amartya K. Sen, 1966. "Peasants and Dualism with or without Surplus Labor," Journal of Political Economy, University of Chicago Press, vol. 74(5), pages 425-425.
    23. Abdulai, Awudu & Eberlin, Richard, 2001. "Technical efficiency during economic reform in Nicaragua: evidence from farm household survey data," Economic Systems, Elsevier, vol. 25(2), pages 113-125, June.
    24. Douglas, Evan J. & Shepherd, Dean A. & Prentice, Catherine, 2020. "Using fuzzy-set qualitative comparative analysis for a finer-grained understanding of entrepreneurship," Journal of Business Venturing, Elsevier, vol. 35(1).
    25. Xueqin Zhu & Alfons Oude Lansink, 2010. "Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 545-564, September.
    26. Adesina, Akinwumi A. & Djato, Kouakou K., 1996. "Farm size, relative efficiency and agrarian policy in Cote d'Ivoire: profit function analysis of rice farms," Agricultural Economics, Blackwell, vol. 14(2), pages 93-102, July.
    27. Anil B. Deolalikar, 1981. "The Inverse Relationship between Productivity and Farm Size: A Test Using Regional Data from India," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(2), pages 275-279.
    28. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    29. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    30. MacDonald, James M. & O'Donoghue, Erik J. & McBride, William D. & Nehring, Richard F. & Sandretto, Carmen L. & Mosheim, Roberto, 2007. "Profits, Costs, and the Changing Structure of Dairy Farming," Economic Research Report 6704, United States Department of Agriculture, Economic Research Service.
    31. Heltberg, Rasmus, 1998. "Rural market imperfections and the farm size-- productivity relationship: Evidence from Pakistan," World Development, Elsevier, vol. 26(10), pages 1807-1826, October.
    32. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Luo & Zhaomin Hu & Xiuping Hao & Nawab Khan & Xiaojie Liu, 2022. "Assessment and Comparison of Agricultural Technology Development under Different Farmland Management Modes: A Case Study of Grain Production, China," Land, MDPI, vol. 11(11), pages 1-24, October.
    2. Thi Ngan Pham & Phung Phi Tran & Minh-Hieu Le & Hoang Nhi Vo & Cong Dat Pham & Hai-Dang Nguyen, 2022. "The Effects of ESG Combined Score on Business Performance of Enterprises in the Transportation Industry," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    3. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    4. Min Zhou & Bing Kuang & Min Zhou & Nan Ke, 2022. "The Spatial and Temporal Evolution of the Coordination Degree in Regard to Farmland Transfer and Cultivated Land Green Utilization Efficiency in China," IJERPH, MDPI, vol. 19(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deininger, Klaus & Jin, Songqing & Liu, Yanyan & Singh, Sudhir, 2015. "Labor Market Performance and the Farm Size-Productivity Relationship in Rural India," 2015 Conference, August 9-14, 2015, Milan, Italy 212720, International Association of Agricultural Economists.
    2. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.
    3. Taylor, Matthew P.H. & Helfand, Steven M., 2021. "The Farm Size – Productivity Relationship in the Wake of Market Reform: An Analysis of Mexican Family Farms," 2021 Conference, August 17-31, 2021, Virtual 315138, International Association of Agricultural Economists.
    4. Ali, Daniel Ayalew & Deininger, Klaus, 2014. "Is there a farm-size productivity relationship in African agriculture ? evidence from Rwanda," Policy Research Working Paper Series 6770, The World Bank.
    5. Steven Helfand & Matthew Taylor, 2018. "The Inverse Relationship between Farm Size and Productivity: Refocusing the Debate," Working Papers 201811, University of California at Riverside, Department of Economics.
    6. Robertson R.B. Khataza & Atakelty Hailu & Graeme J. Doole & Marit E. Kragt & Arega D. Alene, 2019. "Examining the relationship between farm size and productive efficiency: a Bayesian directional distance function approach," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 237-246, March.
    7. Helfand, Steven M. & Taylor, Matthew P.H., 2021. "The inverse relationship between farm size and productivity: Refocusing the debate," Food Policy, Elsevier, vol. 99(C).
    8. von Braun, Joachim & Mirzabaev, Alisher, 2015. "Small Farms: Changing Structures and Roles in Economic Development," Discussion Papers 210464, University of Bonn, Center for Development Research (ZEF).
    9. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2019. "Assessing farm performance by size in Malawi, Tanzania, and Uganda," Food Policy, Elsevier, vol. 84(C), pages 153-164.
    10. Mengistu Assefa Wendimu & Arne Henningsen & Tomasz Gerard Czekaj, 2017. "Incentives and moral hazard: plot level productivity of factory-operated and outgrower-operated sugarcane production in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 48(5), pages 549-560, September.
    11. Donald F. Larson & Keijiro Otsuka & Tomoya Matsumoto & Talip Kilic, 2014. "Should African rural development strategies depend on smallholder farms? An exploration of the inverse-productivity hypothesis," Agricultural Economics, International Association of Agricultural Economists, vol. 45(3), pages 355-367, May.
    12. Graeub, Benjamin E. & Chappell, M. Jahi & Wittman, Hannah & Ledermann, Samuel & Kerr, Rachel Bezner & Gemmill-Herren, Barbara, 2016. "The State of Family Farms in the World," World Development, Elsevier, vol. 87(C), pages 1-15.
    13. Bachev, Hrabrin & Koteva, Nina & Ivanov, Bojidar & Mitova, Dilyana & Boevski, Ivan & Terziev, Dimitar & Dimova, Nadejda & Dimitrova, Reneta & Marinov, Petar & Zvyatkova, Daniela & Sarov, Angel & Koste, 2021. "Холистичен Подход За Дефиниране, Оценяване И Подобряване На Конкурентоспособността На Земеделските Стопанства В България [A holistic framework for defining, evaluating, and improving the competitiv," MPRA Paper 111498, University Library of Munich, Germany.
    14. Klaus Deininger & Songqing Jin & Yanyan Liu & Sudhir K. Singh, 2018. "Can Labor-Market Imperfections Explain Changes in the Inverse Farm Size–Productivity Relationship? Longitudinal Evidence from Rural India," Land Economics, University of Wisconsin Press, vol. 94(2), pages 239-258.
    15. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    16. Cheng, Gang & Qian, Zhenhua, 2011. "Dea数据标准化方法及其在方向距离函数模型中的应用 [Data normalization for data envelopment analysis and its application to directional distance function]," MPRA Paper 31995, University Library of Munich, Germany.
    17. Thapa, Sridhar, 2007. "The relationship between farm size and productivity: empirical evidence from the Nepalese mid-hills," 106th Seminar, October 25-27, 2007, Montpellier, France 7940, European Association of Agricultural Economists.
    18. Ibrahim Demir, 2016. "The firm size, farm size, and transaction costs: the case of hazelnut farms in Turkey," Agricultural Economics, International Association of Agricultural Economists, vol. 47(1), pages 81-90, January.
    19. Abay, Kibrom A. & Abate, Gashaw T. & Barrett, Christopher B. & Bernard, Tanguy, 2019. "Correlated non-classical measurement errors, ‘Second best’ policy inference, and the inverse size-productivity relationship in agriculture," Journal of Development Economics, Elsevier, vol. 139(C), pages 171-184.
    20. Kilic, Talip & Zezza, Alberto & Carletto, Calogero & Savastano, Sara, 2017. "Missing(ness) in Action: Selectivity Bias in GPS-Based Land Area Measurements," World Development, Elsevier, vol. 92(C), pages 143-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6015-:d:816362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.