IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1426-d489546.html
   My bibliography  Save this article

Overcapacity Risk of China’s Coal Power Industry: A Comprehensive Assessment and Driving Factors

Author

Listed:
  • Delu Wang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Xun Xue

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Yadong Wang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The comprehensive and accurate monitoring of coal power overcapacity is the key link and an important foundation for the prevention and control of overcapacity. The previous research fails to fully consider the impact of the industry correlation effect; making it difficult to reflect the state of overcapacity accurately. In this paper; we comprehensively consider the fundamentals; supply; demand; economic and environmental performance of the coal power industry and its upstream; downstream; competitive; and complementary industries to construct an index system for assessing coal power overcapacity risk. Besides; a new evaluation model based on a correlation-based feature selection-association rules-data envelopment analysis (CFS-ARs-DEA) integrated algorithm is proposed by using a data-driven model. The results show that from 2008 to 2017; the risk of coal power overcapacity in China presented a cyclical feature of “decline-rise-decline”, and the risk level has remained high in recent years. In addition to the impact of supply and demand; the environmental benefits and fundamentals of related industries also have a significant impact on coal power overcapacity. Therefore; it is necessary to monitor and govern coal power overcapacity from the overall perspective of the industrial network, and coordinate the advancement of environmental protection and overcapacity control.

Suggested Citation

  • Delu Wang & Xun Xue & Yadong Wang, 2021. "Overcapacity Risk of China’s Coal Power Industry: A Comprehensive Assessment and Driving Factors," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1426-:d:489546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hikaru Ogawa & Akira Nishimori, 2004. "Do Firms Always Choose Excess Capacity?," Economics Bulletin, AccessEcon, vol. 12(2), pages 1-7.
    2. Dobos, Imre & Vörösmarty, Gyöngyi, 2014. "Green supplier selection and evaluation using DEA-type composite indicators," International Journal of Production Economics, Elsevier, vol. 157(C), pages 273-278.
    3. Ray, Subhash C., 2015. "Nonparametric measures of scale economies and capacity utilization: An application to U.S. manufacturing," European Journal of Operational Research, Elsevier, vol. 245(2), pages 602-611.
    4. Zhao, Changhong & Zhang, Weirong & Wang, Yang & Liu, Qilin & Guo, Jingsheng & Xiong, Minpeng & Yuan, Jiahai, 2017. "The economics of coal power generation in China," Energy Policy, Elsevier, vol. 105(C), pages 1-9.
    5. Neelawela, U.D. & Selvanathan, E.A. & Wagner, L.D., 2019. "Global measure of electricity security: A composite index approach," Energy Economics, Elsevier, vol. 81(C), pages 433-453.
    6. Yuan, Jiahai & Xu, Yan & Zhang, Xingping & Hu, Zheng & Xu, Ming, 2014. "China's 2020 clean energy target: Consistency, pathways and policy implications," Energy Policy, Elsevier, vol. 65(C), pages 692-700.
    7. Schlag, Christian & Zeng, Kailin, 2019. "Horizontal industry relationships and return predictability," SAFE Working Paper Series 256, Leibniz Institute for Financial Research SAFE.
    8. Yuan, Jiahai & Lei, Qi & Xiong, Minpeng & Guo, Jingsheng & Hu, Zheng, 2016. "The prospective of coal power in China: Will it reach a plateau in the coming decade?," Energy Policy, Elsevier, vol. 98(C), pages 495-504.
    9. Pindyck, Robert S, 1988. "Irreversible Investment, Capacity Choice, and the Value of the Firm," American Economic Review, American Economic Association, vol. 78(5), pages 969-985, December.
    10. Wang, Delu & Liu, Yifei & Wang, Yadong & Shi, Xunpeng & Song, Xuefeng, 2020. "Allocation of coal de-capacity quota among provinces in China: A bi-level multi-objective combinatorial optimization approach," Energy Economics, Elsevier, vol. 87(C).
    11. Zhou, P. & Ang, B.W. & Poh, K.L., 2007. "A mathematical programming approach to constructing composite indicators," Ecological Economics, Elsevier, vol. 62(2), pages 291-297, April.
    12. Zhang, Huiming & Zheng, Yu & Ozturk, U. Aytun & Li, Shanjun, 2016. "The impact of subsidies on overcapacity: A comparison of wind and solar energy companies in China," Energy, Elsevier, vol. 94(C), pages 821-827.
    13. Wang, Delu & Wang, Yadong & Song, Xuefeng & Liu, Yun, 2018. "Coal overcapacity in China: Multiscale analysis and prediction," Energy Economics, Elsevier, vol. 70(C), pages 244-257.
    14. Schlag, Christian & Zeng, Kailin, 2019. "Horizontal industry relationships and return predictability," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 310-330.
    15. Yang, Guo-liang & Fukuyama, Hirofumi, 2018. "Measuring the Chinese regional production potential using a generalized capacity utilization indicator," Omega, Elsevier, vol. 76(C), pages 112-127.
    16. Kristof Coussement & Stefan Lessmann & Geert Verstraeten, 2017. "A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry," Post-Print hal-01745261, HAL.
    17. Mike Fusillo, 2003. "Excess Capacity and Entry Deterrence: The Case of Ocean Liner Shipping Markets," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 5(2), pages 100-115, June.
    18. Wang, Yong-hua & Luo, Guo-liang & Guo, Yi-wei, 2014. "Why is there overcapacity in China's PV industry in its early growth stage?," Renewable Energy, Elsevier, vol. 72(C), pages 188-194.
    19. repec:ebl:ecbull:v:12:y:2004:i:2:p:1-7 is not listed on IDEAS
    20. Lin, Jiang & Kahrl, Fredrich & Liu, Xu, 2018. "A regional analysis of excess capacity in China’s power systems," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt44j2w0d0, Department of Agricultural & Resource Economics, UC Berkeley.
    21. Zhuo-wan Liu & Tomas Balezentis & Yao-yao Song & Guo-liang Yang, 2019. "Estimating Capacity Utilization of Chinese State Farms," Sustainability, MDPI, vol. 11(18), pages 1-29, September.
    22. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2019. "Estimating capacity utilization of Chinese manufacturing industries," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 94-110.
    23. Shi, Rui-jing & Fan, Xiao-chao & He, Ying, 2017. "Comprehensive evaluation index system for wind power utilization levels in wind farms in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 461-471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cun Zhang & Xiaojie Wang & Shangxin Fang & Xutao Shi, 2022. "Construction and Application of VR-AR Teaching System in Coal-Based Energy Education," Sustainability, MDPI, vol. 14(23), pages 1-14, December.
    2. Jun Liu & Yu Qian & Huihong Chang & Jeffrey Yi-Lin Forrest, 2022. "The Impact of Technology Innovation on Enterprise Capacity Utilization—Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    2. Yu, Shiwei & Lu, Tingwei & Hu, Xing & Liu, Lancui & Wei, Yi-Ming, 2021. "Determinants of overcapacity in China’s renewable energy industry: Evidence from wind, photovoltaic, and biomass energy enterprises," Energy Economics, Elsevier, vol. 97(C).
    3. Wang, Delu & Wang, Yadong & Song, Xuefeng & Liu, Yun, 2018. "Coal overcapacity in China: Multiscale analysis and prediction," Energy Economics, Elsevier, vol. 70(C), pages 244-257.
    4. Ya Wang & Jiaofeng Pan & Ruimin Pei & Guoliang Yang & Bowen Yi, 2020. "A Framework for Assessing Green Capacity Utilization Considering CO 2 Emissions in China’s High-Tech Manufacturing Industry," Sustainability, MDPI, vol. 12(11), pages 1-25, May.
    5. Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.
    6. Fukuyama, Hirofumi & Song, Yao-yao & Ren, Xian-tong & Yang, Guo-liang, 2022. "Using a novel DEA-based model to investigate capacity utilization of Chinese firms," Omega, Elsevier, vol. 106(C).
    7. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2021. "Exploring the dilemma of overcapacity governance in China's coal industry: A tripartite evolutionary game model," Resources Policy, Elsevier, vol. 71(C).
    8. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2020. "Understanding coal miners’ livelihood vulnerability to declining coal demand: Negative impact and coping strategies," Energy Policy, Elsevier, vol. 138(C).
    9. Wang, Miao & Feng, Chao, 2023. "Measuring capacity utilization under the constraints of energy consumption and CO2 emissions using meta-frontier DEA: A case of China's non-ferrous metal industries," Resources Policy, Elsevier, vol. 80(C).
    10. Yao-yao Song & Xian-tong Ren & Guo-liang Yang, 2023. "Capacity utilization change over time," Journal of Productivity Analysis, Springer, vol. 59(1), pages 61-78, February.
    11. Yuan, Jiahai & Guo, Xiaoxuan & Zhang, Weirong & Chen, Sisi & Ai, Yu & Zhao, Changhong, 2019. "Deregulation of power generation planning and elimination of coal power subsidy in China," Utilities Policy, Elsevier, vol. 57(C), pages 1-15.
    12. Xiaoqing Chen & Kristiaan Kerstens, 2022. "Evaluating horizontal mergers in Swedish district courts using plant capacity concepts: with a focus on nonconvexity," Post-Print halshs-03924994, HAL.
    13. Yang, Guo-liang & Fukuyama, Hirofumi & Song, Yao-yao, 2019. "Estimating capacity utilization of Chinese manufacturing industries," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 94-110.
    14. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    15. Yan, Chen & Ji, Yaxing & Chen, Rui, 2023. "Research on the mechanism of selective industrial policies on enterprises' innovation performance ——Evidence from China's photovoltaic industry," Renewable Energy, Elsevier, vol. 215(C).
    16. Dong, Kaiqiang & Sun, Wei, 2022. "Would the market mechanism cause the formation of overcapacity?: Evidence from Chinese listed firms of manufacturing industry," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 97-113.
    17. Zeng, Kailin & Tang, Ting & Liu, Fangbiao & Atta Mills, Ebenezer Fiifi Emire, 2022. "Innovation links, information diffusion, and return predictability: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 83(C).
    18. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    19. Fukuyama, Hirofumi & Liu, Hui-hui & Song, Yao-yao & Yang, Guo-liang, 2021. "Measuring the capacity utilization of the 48 largest iron and steel enterprises in China," European Journal of Operational Research, Elsevier, vol. 288(2), pages 648-665.
    20. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1426-:d:489546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.