IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i14p8032-d596789.html
   My bibliography  Save this article

Spatial Spillover Effect and Influencing Factors of Information Flow in Urban Agglomerations—Case Study of China Based on Baidu Search Index

Author

Listed:
  • Chengzhuo Wu

    (Guangdong Provincial Key Laboratory of Urbanization and Geo-Simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Li Zhuo

    (Guangdong Provincial Key Laboratory of Urbanization and Geo-Simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
    Guangdong Provincial Engineering Research Center for Public Security and Disaster, Sun Yat-sen University, Guangzhou 510275, China)

  • Zhuo Chen

    (Guangdong Provincial Key Laboratory of Urbanization and Geo-Simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Haiyan Tao

    (Guangdong Provincial Key Laboratory of Urbanization and Geo-Simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    Guangdong Provincial Engineering Research Center for Public Security and Disaster, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

Cities in an urban agglomeration closely interact with each other through various flows. Information flow, as one of the important forms of urban interactions, is now increasingly indispensable with the fast development of informatics technology. Thanks to its timely, convenient, and spatially unconstrained transmission ability, information flow has obvious spillover effects, which may strengthen urban interaction and further promote urban coordinated development. Therefore, it is crucial to quantify the spatial spillover effect and influencing factors of information flows, especially at the urban agglomeration scale. However, the academic research on this topic is insufficient. We, therefore, developed a spatial interaction model of information flow (SIM-IF) based on the Baidu Search Index and used it to analyze the spillover effects and influencing factors of information flow in the three major urban agglomerations in China, namely Beijing–Tianjin–Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) in the period of 2014–2019. The results showed that the SIM-IF performed well in all three agglomerations. Quantitative analysis indicated that the BTH had the strongest spillover effect of information flow, followed by the YRD and the PRD. It was also found that the hierarchy of cities had the greatest impact on the spillover effects of information flow. This study may provide scientific basis for the information flow construction in urban agglomerations and benefit the coordinated development of cities.

Suggested Citation

  • Chengzhuo Wu & Li Zhuo & Zhuo Chen & Haiyan Tao, 2021. "Spatial Spillover Effect and Influencing Factors of Information Flow in Urban Agglomerations—Case Study of China Based on Baidu Search Index," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8032-:d:596789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/14/8032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/14/8032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    2. Edward Glaeser & Janet Kohlhase, 2003. "Cities, regions and the decline of transport costs," Economics of Governance, Springer, vol. 83(1), pages 197-228, October.
    3. A. Varga, 2006. "Spatial Knowledge Spillovers and University Research: Evidence from Austria," Springer Books, in: Innovation, Networks, and Knowledge Spillovers, chapter 10, pages 211-232, Springer.
    4. Conley, Timothy G & Ligon, Ethan, 2002. "Economic Distance and Cross-Country Spillovers," Journal of Economic Growth, Springer, vol. 7(2), pages 157-187, June.
    5. Evert Meijers & Martijn Burger & Edward L. Glaeser & Giacomo A. M. Ponzetto & Yimei Zou, 2016. "Urban networks: Connecting markets, people, and ideas," Papers in Regional Science, Wiley Blackwell, vol. 95(1), pages 17-59, March.
    6. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    7. James P. LeSage & Christine Thomas-Agnan, 2015. "Interpreting Spatial Econometric Origin-Destination Flow Models," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 188-208, March.
    8. James P. LeSage & R. Kelley Pace, 2008. "Spatial Econometric Modeling Of Origin‐Destination Flows," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 941-967, December.
    9. Ni, Linglin & Wang, Xiaokun (Cara) & Zhang, Dapeng, 2016. "Impacts of information technology and urbanization on less-than-truckload freight flows in China: An analysis considering spatial effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 12-25.
    10. Smith, Pamela J., 1999. "Do Knowledge Spillovers Contribute to U.S. State Output and Growth?," Journal of Urban Economics, Elsevier, vol. 45(2), pages 331-353, March.
    11. Gabauer, David & Gupta, Rangan, 2018. "On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach," Economics Letters, Elsevier, vol. 171(C), pages 63-71.
    12. Hong, Jingke & Gu, Jianping & He, Rongxiao & Wang, Xianzhu & Shen, Qiping, 2020. "Unfolding the spatial spillover effects of urbanization on interregional energy connectivity: Evidence from province-level data," Energy, Elsevier, vol. 196(C).
    13. Sabina Buczkowska & Nicolas Coulombel & Matthieu Lapparent, 2019. "A comparison of Euclidean Distance, Travel Times, and Network Distances in Location Choice Mixture Models," Networks and Spatial Economics, Springer, vol. 19(4), pages 1215-1248, December.
    14. Yingxia Pu & Xinyi Zhao & Guangqing Chi & Jin Zhao & Fanhua Kong, 2019. "A spatial dynamic panel approach to modelling the space-time dynamics of interprovincial migration flows in China," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(31), pages 913-948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengfu Wang & Lijun Song & Haoqi Lu & Shuxin Zheng & Chengfeng Huang, 2022. "Assessing the Economic Energy Level of the Chengdu–Chongqing Economic Circle: An Integrative Perspective of “Field Source” and “Field”," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    2. Sujuan Li & Xiaohui Zhang & Xueling Wu & Erbin Xu, 2022. "Exploration of Urban Network Spatial Structure Based on Traffic Flow, Migration Flow and Information Flow: A Case Study of Shanxi Province, China," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    3. Fei Ma & Yujie Zhu & Kum Fai Yuen & Qipeng Sun & Haonan He & Xiaobo Xu & Zhen Shang & Yan Xu, 2022. "Exploring the Spatiotemporal Evolution and Sustainable Driving Factors of Information Flow Network: A Public Search Attention Perspective," IJERPH, MDPI, vol. 19(1), pages 1-25, January.
    4. Shengdong Nie & Hengkai Li, 2023. "Analysis of Construction Networks and Structural Characteristics of Pearl River Delta and Surrounding Cities Based on Multiple Connections," Sustainability, MDPI, vol. 15(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yufei Lin & Yingxia Pu & Xinyi Zhao & Guangqing Chi & Cui Ye, 2023. "The Spatiotemporal Elasticity of Age Structure in China’s Interprovincial Migration System," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    2. Tamara Mata & Carlos Llano, 2013. "Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects," Journal of Geographical Systems, Springer, vol. 15(3), pages 319-367, July.
    3. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    4. Moura, Ticiana Grecco Zanon & Chen, Zhangliang & Garcia-Alonso, Lorena, 2019. "Spatial interaction effects on inland distribution of maritime flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 1-10.
    5. Yingxia Pu & Ying Ge, 2016. "Multilateral mechanism analysis of interprovincial migration flows in China," ERSA conference papers ersa16p423, European Regional Science Association.
    6. Yingxia Pu & Xinyi Zhao & Guangqing Chi & Jin Zhao & Fanhua Kong, 2019. "A spatial dynamic panel approach to modelling the space-time dynamics of interprovincial migration flows in China," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(31), pages 913-948.
    7. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    8. Luisa Corrado & Bernard Fingleton, 2012. "Where Is The Economics In Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 210-239, May.
    9. Gabriel Lyrio de Oliveira & André Luis Squarize Chagas, 2020. "Effects of a cash transfer programme on origin–destination migration flows," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(1), pages 83-104, February.
    10. Oshan, Taylor M., 2022. "Spatial Interaction Modeling," OSF Preprints m3ah8, Center for Open Science.
    11. Antosik, Liubov & Ivashina, Natalya, 2019. "Modeling of spatial dependence in the migration flows of graduates of the higher education institutions of the Russian Federation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 54, pages 70-89.
    12. Ni, Linglin & Wang, Xiaokun (Cara) & Zhang, Dapeng, 2016. "Impacts of information technology and urbanization on less-than-truckload freight flows in China: An analysis considering spatial effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 12-25.
    13. Andrew J. Cassey & Katherine N. Schmeiser & Andreas Waldkirch, 2016. "Exporting Spatial Externalities," Open Economies Review, Springer, vol. 27(4), pages 697-720, September.
    14. Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Papers in Regional Science, Wiley Blackwell, vol. 96(2), pages 357-380, June.
    15. Daniele Fabbri & Silvana Robone, 2010. "The geography of hospital admission in a national health service with patient choice," Health Economics, John Wiley & Sons, Ltd., vol. 19(9), pages 1029-1047, September.
    16. Pamela Smith & Xiangwen Kong, 2022. "Intellectual property rights and trade: The exceptional case of GMOs," The World Economy, Wiley Blackwell, vol. 45(3), pages 763-811, March.
    17. Rodolfo Metulini & Roberto Patuelli & Daniel A. Griffith, 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade," Econometrics, MDPI, vol. 6(1), pages 1-15, February.
    18. Alessio Baldassarre & Danilo Carullo & Paolo Di Caro & Elisa Fusco & Pasquale Giacobbe & Carlo Orecchia, 2023. "Bilateral Regional Trade Flows in Italy: an Origin-Destination-Commodity GWR-SAR approach," Working Papers wp2023-18, Ministry of Economy and Finance, Department of Finance.
    19. Sabina Buczkowska & Nicolas Coulombel & Matthieu Lapparent, 2019. "A comparison of Euclidean Distance, Travel Times, and Network Distances in Location Choice Mixture Models," Networks and Spatial Economics, Springer, vol. 19(4), pages 1215-1248, December.
    20. Laurent, Thibault & Margaretic, Paula & Thomas-Agnan, Christine, 2021. "Do neighboring countries matter when explaining bilateral remittances?," TSE Working Papers 21-1221, Toulouse School of Economics (TSE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:14:p:8032-:d:596789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.