IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2920-d342087.html
   My bibliography  Save this article

Efficient Deployment Design of Wireless Charging Electric Tram System with Battery Management Policy

Author

Listed:
  • Young Dae Ko

    (Department of Hotel and Tourism Management, College of Hospitality and Tourism, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea)

  • Yonghui Oh

    (Department of Industrial and Management Engineering, Daejin University, Pocheon 11159, Korea)

Abstract

As an alternative to the environmental pollution problem of transportation means, the application of electric tram is considered in urban areas. However, due to the aesthetic problems occurs by the electric supply line for an electric tram, the wireless charging electric tram may be regarded as an alternative. It can be supplied electricity wirelessly from the wireless charging infrastructure installed on the railways even while moving. For a successful application, it is important to install and operate the overall systems with minimum investment cost. In this study, a mathematical model-based optimization technique, one of the methods of operations research, is adopted to derive the decision-making elements such as capacity and management of battery and allocation of the wireless charging infrastructure. Numerical example shows the optimal capacity and management of battery for a wireless charging electric tram and the ideal installation locations of the wireless charging infrastructures.

Suggested Citation

  • Young Dae Ko & Yonghui Oh, 2020. "Efficient Deployment Design of Wireless Charging Electric Tram System with Battery Management Policy," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2920-:d:342087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    2. Costa, Álvaro & Fernandes, Ruben, 2012. "Urban public transport in Europe: Technology diffusion and market organisation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 269-284.
    3. Plötz, Patrick & Funke, Simon Árpád & Jochem, Patrick, 2018. "The impact of daily and annual driving on fuel economy and CO2 emissions of plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongliang Deng & Haolun Guo & Miaomiao Meng & Ying Zhang & Shuangshuang Pei, 2020. "Exploring the Effects of Safety Climate on Worker’s Safety Behavior in Subway Operation," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    2. Jiawei Gui & Qunqi Wu, 2020. "Multiple Utility Analyses for Sustainable Public Transport Planning and Management: Evidence from GPS-Equipped Taxi Data in Haikou," Sustainability, MDPI, vol. 12(19), pages 1-46, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Qi Liu & Jiahao Liu & Dunhu Liu, 2018. "Intelligent Multi-Objective Public Charging Station Location with Sustainable Objectives," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    4. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    5. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    6. Katarzyna Markowska & Agnieszka Sękala & Kinga Stecuła & Tomasz Kawka & Kirill Sirovitskiy & Oksana Pankova & Nataliia Vnukova & Mikhail Shulyak & Serhii Kharchenko & Taras Shchur & Ewa Siudyka, 2023. "Comparison of the Sustainability and Economic Efficiency of an Electric Car and an Aircraft—A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    7. Zhang, Yachao & Xie, Shiwei & Shu, Shengwen, 2022. "Multi-stage robust optimization of a multi-energy coupled system considering multiple uncertainties," Energy, Elsevier, vol. 238(PC).
    8. Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
    9. Aguiar, Luis & Gagnepain, Philippe, 2022. "Absorptive capacity, knowledge spillovers and incentive contracts," International Journal of Industrial Organization, Elsevier, vol. 82(C).
    10. Sidorchuk, Roman & Skorobogatykh, Irina, 2015. "Marketing evaluation of quality attributes of public transport using parametric approach: an overview of some of the results of two waves of research," Annals of marketing-mba, Department of Marketing, Marketing MBA (RSconsult), vol. 1, February.
    11. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    12. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    13. Dasgupta,Susmita & Lall,Somik V. & Wheeler,David R., 2021. "Urban CO2 Emissions : A Global Analysis with New Satellite Data," Policy Research Working Paper Series 9845, The World Bank.
    14. Liu, Xueying & Madlener, Reinhard, 2021. "The sky is the limit: Assessing aircraft market diffusion with agent-based modeling," Journal of Air Transport Management, Elsevier, vol. 96(C).
    15. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Lingshu Zhong & Mingyang Pei, 2020. "Optimal Design for a Shared Swap Charging System Considering the Electric Vehicle Battery Charging Rate," Energies, MDPI, vol. 13(5), pages 1-16, March.
    17. Tao Li & Junlin Zhu & Jianqiang Luo & Chaonan Yi & Baoqing Zhu, 2023. "Breaking Triopoly to Achieve Sustainable Smart Digital Infrastructure Based on Open-Source Diffusion Using Government–Platform–User Evolutionary Game," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    18. Marcin Połom, 2021. "Technology Development and Spatial Diffusion of Auxiliary Power Sources in Trolleybuses in European Countries," Energies, MDPI, vol. 14(11), pages 1-18, May.
    19. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    20. Lv, Si & Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan, 2021. "Integrated demand response for congestion alleviation in coupled power and transportation networks," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2920-:d:342087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.