IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9375-d443334.html
   My bibliography  Save this article

Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia

Author

Listed:
  • Rawshan Ara Begum

    (Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

  • Asif Raihan

    (Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

  • Mohd Nizam Mohd Said

    (Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia)

Abstract

This study measures the relationship and dynamic impacts of economic growth and forested area on carbon dioxide (CO 2 ) emissions in Malaysia. Time series data over the period of 1990 to 2016 were used by employing the dynamic ordinary least squared (DOLS) approach. The results of DOLS estimation indicate that the coefficient of economic growth is positive and significant with CO 2 emissions, meaning that RM1 million increase in gross domestic product (GDP) is associated with an increase in CO 2 emissions of 0.931 kilo tons. Instead, the long-run coefficient of forested area found negative and significant, which implies that declining one hectare of forested area (i.e., deforestation) has an impact of three kilo tons of CO 2 emissions rise in Malaysia. Our study findings indicate that economic growth and deforested area have an adverse effect on Malaysia’s carbon emissions where GDP growth fosters carbon emissions at a faster rate. Thus, the effective implementation of policy measures and economic instruments including afforestation and reforestation, forest conservation, sustainable forest management, REDD+ (reducing emissions from deforestation and forest degradation plus) mechanism and other emission reduction mechanisms inter alia could be useful for reducing carbon emissions while decreasing deforestation and maintaining the long-term economic growth in Malaysia.

Suggested Citation

  • Rawshan Ara Begum & Asif Raihan & Mohd Nizam Mohd Said, 2020. "Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9375-:d:443334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    2. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2012. "Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses," Energy Economics, Elsevier, vol. 34(2), pages 518-528.
    3. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    4. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    5. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    6. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    7. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    8. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    9. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "Energy consumption, pollutant emissions and economic growth in South Africa," Energy Economics, Elsevier, vol. 32(6), pages 1374-1382, November.
    10. Yuriy Bilan & Dalia Streimikiene & Tetyana Vasylieva & Oleksii Lyulyov & Tetyana Pimonenko & Anatolii Pavlyk, 2019. "Linking between Renewable Energy, CO 2 Emissions, and Economic Growth: Challenges for Candidates and Potential Candidates for the EU Membership," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    11. Sharif Hossain, Md., 2011. "Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries," Energy Policy, Elsevier, vol. 39(11), pages 6991-6999.
    12. Fei, Li & Dong, Suocheng & Xue, Li & Liang, Quanxi & Yang, Wangzhou, 2011. "Energy consumption-economic growth relationship and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 39(2), pages 568-574, February.
    13. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    14. Aviral Kumar TIWARI, 2011. "Energy Consumption, Co2 Emission and Economic Growth: A Revisit of the Evidence from India," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 11(2).
    15. Hubert Paluš & Ján Parobek & Martin Moravčík & Miroslav Kovalčík & Michal Dzian & Vlastimil Murgaš, 2020. "Projecting Climate Change Potential of Harvested Wood Products under Different Scenarios of Wood Production and Utilization: Study of Slovakia," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    16. Yunfeng, Yan & Laike, Yang, 2010. "China's foreign trade and climate change: A case study of CO2 emissions," Energy Policy, Elsevier, vol. 38(1), pages 350-356, January.
    17. Jingqi Sun & Jing Shi & Boyang Shen & Shuqing Li & Yuwei Wang, 2018. "Nexus among Energy Consumption, Economic Growth, Urbanization and Carbon Emissions: Heterogeneous Panel Evidence Considering China’s Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    18. Friedl, Birgit & Getzner, Michael, 2003. "Determinants of CO2 emissions in a small open economy," Ecological Economics, Elsevier, vol. 45(1), pages 133-148, April.
    19. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    20. Roda Jean-Marc & Kamaruddin Norfaryanti & Palhiarim Tobias Rafael, 2014. "Deciphering Corporate Governance and Environmental Commitments among Southeast Asian Transnationals: Uptake of Sustainability Certification," Working Papers 40412, CIRAD, Forest department, UPR40, revised May 2015.
    21. Arouri, Mohamed El Hedi & Ben Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2012. "Energy consumption, economic growth and CO2 emissions in Middle East and North African countries," Energy Policy, Elsevier, vol. 45(C), pages 342-349.
    22. repec:eco:journ2:2017-04-13 is not listed on IDEAS
    23. Shafik, Nemat, 1994. "Economic Development and Environmental Quality: An Econometric Analysis," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 757-773, Supplemen.
    24. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
    25. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2010. "CO2 emissions, energy consumption and economic growth in BRIC countries," Energy Policy, Elsevier, vol. 38(12), pages 7850-7860, December.
    26. Olimpia Neagu & Mircea Constantin Teodoru, 2019. "The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    27. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    28. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    29. Wang, Kuan-Min, 2012. "Modelling the nonlinear relationship between CO2 emissions from oil and economic growth," Economic Modelling, Elsevier, vol. 29(5), pages 1537-1547.
    30. Tiwari Aviral, 2011. "Primary Energy Consumption, CO2 Emissions and Economic Growth: Evidence from India," South East European Journal of Economics and Business, Sciendo, vol. 6(2), pages 99-117, November.
    31. Baek, Jungho & Kim, Hyun Seok, 2013. "Is economic growth good or bad for the environment? Empirical evidence from Korea," Energy Economics, Elsevier, vol. 36(C), pages 744-749.
    32. Park, JaeHyun & Hong, TaeHoon, 2013. "Analysis of South Korea’s economic growth, carbon dioxide emission, and energy consumption using the Markov switching model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 543-551.
    33. Jahangir Alam, Mohammad & Ara Begum, Ismat & Buysse, Jeroen & Van Huylenbroeck, Guido, 2012. "Energy consumption, carbon emissions and economic growth nexus in Bangladesh: Cointegration and dynamic causality analysis," Energy Policy, Elsevier, vol. 45(C), pages 217-225.
    34. Ang, James B., 2008. "Economic development, pollutant emissions and energy consumption in Malaysia," Journal of Policy Modeling, Elsevier, vol. 30(2), pages 271-278.
    35. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    36. Huang, Ching-Hsun & Kronrad, Gary D., 2001. "The cost of sequestering carbon on private forest lands," Forest Policy and Economics, Elsevier, vol. 2(2), pages 133-142, June.
    37. Saboori, Behnaz & Sapri, Maimunah & bin Baba, Maizan, 2014. "Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)'s transport sector: A fully modified bi-directional relationship approach," Energy, Elsevier, vol. 66(C), pages 150-161.
    38. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    39. Mohd Shahidan Shaari & Zulkefly Abdul Karim & Noorazeela Zainol Abidin, 2020. "The Effects of Energy Consumption and National Output on CO 2 Emissions: New Evidence from OIC Countries Using a Panel ARDL Analysis," Sustainability, MDPI, vol. 12(8), pages 1-12, April.
    40. Rajan Parajuli & Omkar Joshi & Tek Maraseni, 2019. "Incorporating Forests, Agriculture, and Energy Consumption in the Framework of the Environmental Kuznets Curve: A Dynamic Panel Data Approach," Sustainability, MDPI, vol. 11(9), pages 1-11, May.
    41. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    42. Begum, Rawshan Ara & Sohag, Kazi & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "CO2 emissions, energy consumption, economic and population growth in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 594-601.
    43. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    44. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, I," Energy, Elsevier, vol. 36(1), pages 685-693.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raihan, Asif, 2023. "Toward sustainable and green development in Chile: Dynamic influences of carbon emission reduction variables," Innovation and Green Development, Elsevier, vol. 2(2).
    2. Asif Raihan & Mamunur Rashid & Liton Chandra Voumik & Salma Akter & Miguel Angel Esquivias, 2023. "The Dynamic Impacts of Economic Growth, Financial Globalization, Fossil Fuel, Renewable Energy, and Urbanization on Load Capacity Factor in Mexico," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    3. Asif Raihan, 2023. "An econometric evaluation of the effects of economic growth, energy use, and agricultural value added on carbon dioxide emissions in Vietnam," Asia-Pacific Journal of Regional Science, Springer, vol. 7(3), pages 665-696, September.
    4. Raihan, Asif, 2023. "The influences of renewable energy, globalization, technological innovations, and forests on emission reduction in Colombia," Innovation and Green Development, Elsevier, vol. 2(4).
    5. Raihan, Asif, 2023. "Nexus between greenhouse gas emissions and its determinants: The role of renewable energy and technological innovations towards green development in South Korea," Innovation and Green Development, Elsevier, vol. 2(3).
    6. Asif Raihan & Rawshan Ara Begum & Mohd Nizam Mohd Said & Joy Jacqueline Pereira, 2022. "Relationship between economic growth, renewable energy use, technological innovation, and carbon emission toward achieving Malaysia’s Paris agreement," Environment Systems and Decisions, Springer, vol. 42(4), pages 586-607, December.
    7. Hadi Sasana & Panji Kusuma Prasetyanto & Diah Lufti Wijayanti & Ari Nurul Fatimah, 2023. "The Impact of Electricity Energy Production, Fossil Energy Consumption, Renewable Energy Consumption, Deforestation, and Agriculture towards Climate Change in Middle-Income Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 442-449, September.
    8. Asif Raihan & Almagul Tuspekova, 2022. "Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(4), pages 794-814, December.
    9. Raihan, Asif & Pavel, Monirul Islam & Muhtasim, Dewan Ahmed & Farhana, Sadia & Faruk, Omar & Paul, Arindrajit, 2023. "The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia," Innovation and Green Development, Elsevier, vol. 2(1).
    10. Dulal Chandra Pattak & Farian Tahrim & Mahdi Salehi & Liton Chandra Voumik & Salma Akter & Mohammad Ridwan & Beata Sadowska & Grzegorz Zimon, 2023. "The Driving Factors of Italy’s CO 2 Emissions Based on the STIRPAT Model: ARDL, FMOLS, DOLS, and CCR Approaches," Energies, MDPI, vol. 16(15), pages 1-21, August.
    11. Raihan, Asif, 2023. "Economy-energy-environment nexus: The role of information and communication technology towards green development in Malaysia," Innovation and Green Development, Elsevier, vol. 2(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Begum, Rawshan Ara & Sohag, Kazi & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "CO2 emissions, energy consumption, economic and population growth in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 594-601.
    2. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    3. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    4. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    5. Priscilla Massa-Sánchez & Luis Quintana-Romero & Ronny Correa-Quezada & María de la Cruz del Río-Rama, 2020. "Empirical Evidence in Ecuador between Economic Growth and Environmental Deterioration," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    6. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    7. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    8. Tusawar Iftikhar Ahmad & Mabrooka Altaf & Kokab Kiran, 2020. "Analyzing the long run linkage between Population, Economic Development and Energy Consumption on Carbon emissions of ASEAN Nations," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 1(1), pages 26-37, June.
    9. Shahbaz, Muhammad & Sbia, Rashid & Hamdi, Helmi, 2013. "The Environmental cost of Skiing in the Desert? Evidence from Cointegration with unknown Structural breaks in UAE," MPRA Paper 48007, University Library of Munich, Germany, revised 03 Jul 2013.
    10. Miloud Lacheheb & A. S. Abdul Rahim & Abdalla Sirag, 2015. "Economic Growth and Carbon Dioxide Emissions: Investigating the Environmental Kuznets Curve Hypothesis in Algeria," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1125-1132.
    11. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    12. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    13. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    14. Chindo Sulaiman & A. S. Abdul-Rahim, 2018. "Population Growth and CO2 Emission in Nigeria: A Recursive ARDL Approach," SAGE Open, , vol. 8(2), pages 21582440187, April.
    15. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    16. Muhammad, Shahbaz & Adebola Solarin, Solarin & Ozturk, Ilhan, 2016. "Environmental Kuznets curve hypothesis and the role of globalization in selected African countries," MPRA Paper 69859, University Library of Munich, Germany, revised 04 Mar 2016.
    17. Mumin Atalay Cetin & Ibrahim Bakirtas, 2020. "The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets," Energy & Environment, , vol. 31(4), pages 634-655, June.
    18. Muhammad, Shahbaz, 2012. "Multivariate granger causality between CO2 Emissions, energy intensity, financial development and economic growth: evidence from Portugal," MPRA Paper 37774, University Library of Munich, Germany, revised 31 Mar 2012.
    19. Pablo-Romero, María del P. & De Jesús, Josué, 2016. "Economic growth and energy consumption: The Energy-Environmental Kuznets Curve for Latin America and the Caribbean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1343-1350.
    20. repec:ipg:wpaper:2014-542 is not listed on IDEAS
    21. Omri, Anis & Nguyen, Duc Khuong & Rault, Christophe, 2014. "Causal interactions between CO2 emissions, FDI, and economic growth: Evidence from dynamic simultaneous-equation models," Economic Modelling, Elsevier, vol. 42(C), pages 382-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9375-:d:443334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.