IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p262-d302846.html
   My bibliography  Save this article

Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study

Author

Listed:
  • Amir A. Imam

    (Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Yusuf A. Al-Turki

    (Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Sreerama Kumar R.

    (Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

This paper presents a techno-economic feasibility evaluation for a grid-connected photovoltaic energy conversion system on the rooftop of a typical residential building in Jeddah, one of the major cities in Saudi Arabia. In Saudi Arabia, electric energy consumption is the highest in the domestic sector, with 48.1% of the total electricity consumption. As the power generation in Saudi Arabia mainly relies on conventional resources, environmental pollution and energy sustainability are major concerns. To minimize these issues, the Saudi government is in the process of maximizing the utilization of renewable energy resources for power generation. Investing in solar energy in Saudi Arabia is important because the country is witnessing a rapid increase in load demand, with annual growth rates of 6%. In this paper, the system advisor model software for renewable energy modeling has been utilized to perform a techno-economic feasibility analysis of a residential grid-connected solar photovoltaic (PV) system, which is proposed for a typical apartment in Saudi Arabia, on the basis of various key performance indicators, namely: yield factor, capacity factor, performance ratio, levelized cost of energy, net present value, internal rate of return, and payback period. A sensitivity analysis that investigates the impact of varying techno-economic parameters on system performance and feasibility is also discussed. The size of the PV system for a typical Saudi Arabian apartment is estimated to be 12.25 kW. Results have shown that the proposed system can generate 87% of the electricity needs of an apartment. The technical analysis showed that the capacity factor and the performance ratio were 22% and 78% respectively. The levelized cost of energy and net present value revealed competitive figures of 0.0382 $/kWh and $4378, respectively. The investigations indicate that residential PV installations are an effective option for energy management in the country.

Suggested Citation

  • Amir A. Imam & Yusuf A. Al-Turki & Sreerama Kumar R., 2019. "Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:262-:d:302846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walid Matar, 2015. "Modeling residential electricity consumption and efficiency within an economic framework," Discussion Papers ks-1515-dp09a, King Abdullah Petroleum Studies and Research Center.
    2. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    3. Jamiu Omotayo Oladigbolu & Makbul A. M. Ramli & Yusuf A. Al-Turki, 2019. "Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    4. Aksakal, Ahmet & Rehman, Shafiqur, 1999. "Global solar radiation in Northeastern Saudi Arabia," Renewable Energy, Elsevier, vol. 17(4), pages 461-472.
    5. Yusuf Opeyemi Akinwale, 2018. "An Empirical Analysis of Short Run and Long Run Relationships between Energy Consumption, Technology Innovation and Economic Growth in Saudi Arabia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 139-146.
    6. Shaahid, S.M. & Elhadidy, M.A., 2008. "Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions--A step to clean future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 488-503, February.
    7. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    8. EL-Shimy, M., 2009. "Viability analysis of PV power plants in Egypt," Renewable Energy, Elsevier, vol. 34(10), pages 2187-2196.
    9. Newsham, Guy R. & Bowker, Brent G., 2010. "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review," Energy Policy, Elsevier, vol. 38(7), pages 3289-3296, July.
    10. Hoel, Michael & Kverndokk, Snorre, 1996. "Depletion of fossil fuels and the impacts of global warming," Resource and Energy Economics, Elsevier, vol. 18(2), pages 115-136, June.
    11. Alnaser, W.E. & Alnaser, N.W., 2011. "The status of renewable energy in the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3074-3098, August.
    12. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    13. Pietruszko, S. M. & Gradzki, M., 2003. "Performance of a grid connected small PV system in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 177-184, January.
    14. Sidrach-de-Cardona, M. & López, Ll.Mora, 1998. "Evaluation of a grid-connected photovoltaic system in southern Spain," Renewable Energy, Elsevier, vol. 15(1), pages 527-530.
    15. AlYahya, Sulaiman & Irfan, Mohammad A., 2016. "The techno-economic potential of Saudi Arabia׳s solar industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 697-702.
    16. Taleb, Hanan M. & Sharples, Steve, 2011. "Developing sustainable residential buildings in Saudi Arabia: A case study," Applied Energy, Elsevier, vol. 88(1), pages 383-391, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullahi Abubakar Mas’ud & Hassan Zuhair Al-Garni, 2021. "Optimum Configuration of a Renewable Energy System Using Multi-Year Parameters and Advanced Battery Storage Modules: A Case Study in Northern Saudi Arabia," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    2. Zakariya Kaneesamkandi & Ateekh Ur Rehman, 2021. "Optimum and Sustainable Cooling Technology Selection for Different Climatic Conditions," Energies, MDPI, vol. 14(19), pages 1-29, September.
    3. Radwan A. Almasri & Abdullah A. Alardhi & Saad Dilshad, 2021. "Investigating the Impact of Integration the Saudi Code of Energy Conservation with the Solar PV Systems in Residential Buildings," Sustainability, MDPI, vol. 13(6), pages 1-30, March.
    4. Fahad Saleh Al-Ismail & Md Shafiul Alam & Md Shafiullah & Md Ismail Hossain & Syed Masiur Rahman, 2023. "Impacts of Renewable Energy Generation on Greenhouse Gas Emissions in Saudi Arabia: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    5. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "The Motivation for Incorporation of Microgrid Technology in Rooftop Solar Photovoltaic Deployment to Enhance Energy Economics," Sustainability, MDPI, vol. 12(24), pages 1-27, December.
    6. Mariusz T. Sarniak, 2020. "Researches of the Impact of the Nominal Power Ratio and Environmental Conditions on the Efficiency of the Photovoltaic System: A Case Study for Poland in Central Europe," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    7. Mohammad Reza Maghami & Jagadeesh Pasupuleti & Chee Mei Ling, 2023. "Impact of Photovoltaic Penetration on Medium Voltage Distribution Network," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    8. Abdulrahman AlKassem & Azeddine Draou & Abdullah Alamri & Hisham Alharbi, 2022. "Design Analysis of an Optimal Microgrid System for the Integration of Renewable Energy Sources at a University Campus," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    9. Abdullahi Oboh Muhammed & Muhyaddin Rawa, 2020. "A Systematic PVQV-Curves Approach for Investigating the Impact of Solar Photovoltaic-Generator in Power System Using PowerWorld Simulator," Energies, MDPI, vol. 13(10), pages 1-21, May.
    10. Youssef Kassem & Hüseyin Gökçekuş & Ali Güvensoy, 2021. "Techno-Economic Feasibility of Grid-Connected Solar PV System at Near East University Hospital, Northern Cyprus," Energies, MDPI, vol. 14(22), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    2. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    3. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    4. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    5. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    6. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    7. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    8. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    9. Ahmad, Nasir & Derrible, Sybil, 2018. "An information theory based robustness analysis of energy mix in US States," Energy Policy, Elsevier, vol. 120(C), pages 167-174.
    10. Kinab, E. & Elkhoury, M., 2012. "Renewable energy use in Lebanon: Barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4422-4431.
    11. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    12. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    13. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2015. "Consensus-based low carbon domestic design framework for sustainable homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 417-432.
    14. Ahmed Bilal Awan & Mohammed Alghassab & Muhammad Zubair & Abdul Rauf Bhatti & Muhammad Uzair & Ghulam Abbas, 2020. "Comparative Analysis of Ground-Mounted vs. Rooftop Photovoltaic Systems Optimized for Interrow Distance between Parallel Arrays," Energies, MDPI, vol. 13(14), pages 1-21, July.
    15. Ahmed Bilal Awan & Muhammad Zubair & Praveen R. P. & Ahmed G. Abokhalil, 2018. "Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    16. Le Phuong Truong & Hoang An Quoc & Huan-Liang Tsai & Do Van Dung, 2020. "A Method to Estimate and Analyze the Performance of a Grid-Connected Photovoltaic Power Plant," Energies, MDPI, vol. 13(10), pages 1-17, May.
    17. Humberto Vidal & Marco Rivera & Patrick Wheeler & Nicolás Vicencio, 2020. "The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region," Sustainability, MDPI, vol. 12(21), pages 1-16, November.
    18. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    19. Alyahya, Sulaiman & Irfan, Mohammad A., 2016. "Role of Saudi universities in achieving the solar potential 2030 target," Energy Policy, Elsevier, vol. 91(C), pages 325-328.
    20. Ghaithan, Ahmed M. & Al-Hanbali, Ahmad & Mohammed, Awsan & Attia, Ahmed M. & Saleh, Haitham & Alsawafy, Omar, 2021. "Optimization of a solar-wind- grid powered desalination system in Saudi Arabia," Renewable Energy, Elsevier, vol. 178(C), pages 295-306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:262-:d:302846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.