IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v67y2017icp651-661.html
   My bibliography  Save this article

Outdoor performance analysis of different PV panel types

Author

Listed:
  • Elibol, Erdem
  • Özmen, Özge Tüzün
  • Tutkun, Nedim
  • Köysal, Oğuz

Abstract

Photovoltaic (PV) panel efficiency has been tested in the laboratory at standard test conditions (STC) (25°C, 1000W/m2 and AM:1.5). However, PV panels are used in different regions and climatic conditions quite different from STC. Due to that, panel efficiency is not observed same with manufacturer catalogue data. This study focus on outdoor testing of PV panels performances at literature, in addition, one-year results of mono-crystalline (2.35kW), polycrystalline (2.64kW) and amorphous silicon (2.40kW) photovoltaic panels were analysed. These PV panels were placed on the roof of Düzce University Scientific and Technological Researches Application and Research Centre (DUBİT) in Düzce Province, in Turkey, one of the countries with the highest solar power potential in Europe and connected to power grid. Amounts of energy produced by the panels over a day, a month and a year as well as inverter efficiency and performance ratios were calculated. Performance ratios were found out as 73%, 81% and 91% for a-Si, polycrystalline and mono-crystalline PV panels, respectively. Panel efficiency was calculated as 4.79%, 11.36% and 13.26% in the same order. All results were compared with Previous studies. Statistical analysis was made to state relationship between efficiency and performance ratios of panel types, environmental temperature, panel temperature and amount of radiation. As a result of the statistical analysis, it was observed that temperature increase of 1°C increased the efficiency of a-Si panels 0.029% and the efficiency of polycrystalline panels 0.033%, yet, decreased the efficiency of mono-crystalline panels 0.084%.

Suggested Citation

  • Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:651-661
    DOI: 10.1016/j.rser.2016.09.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116305445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    2. Cañete, Cristina & Carretero, Jesús & Sidrach-de-Cardona, Mariano, 2014. "Energy performance of different photovoltaic module technologies under outdoor conditions," Energy, Elsevier, vol. 65(C), pages 295-302.
    3. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    4. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    5. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    6. Makrides, George & Zinsser, Bastian & Phinikarides, Alexander & Schubert, Markus & Georghiou, George E., 2012. "Temperature and thermal annealing effects on different photovoltaic technologies," Renewable Energy, Elsevier, vol. 43(C), pages 407-417.
    7. Başoğlu, Mustafa E. & Kazdaloğlu, Abdulvehhap & Erfidan, Tarık & Bilgin, Mehmet Z. & Çakır, Bekir, 2015. "Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 357-365.
    8. Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
    9. EL-Shimy, M., 2009. "Viability analysis of PV power plants in Egypt," Renewable Energy, Elsevier, vol. 34(10), pages 2187-2196.
    10. Celik, Ali N., 2011. "Review of Turkey's current energy status: A case study for wind energy potential of Çanakkale province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2743-2749, August.
    11. Cucumo, Mario & Rosa, Alessandro De & Ferraro, Vittorio & Kaliakatsos, Dimitrios & Marinelli, Valerio, 2006. "Performance analysis of a 3kW grid-connected photovoltaic plant," Renewable Energy, Elsevier, vol. 31(8), pages 1129-1138.
    12. Kumar, Ashwani & Kumar, Kapil & Kaushik, Naresh & Sharma, Satyawati & Mishra, Saroj, 2010. "Renewable energy in India: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2434-2442, October.
    13. Pietruszko, S. M. & Gradzki, M., 2003. "Performance of a grid connected small PV system in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 177-184, January.
    14. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    15. Pavlović, Tomislav & Milosavljević, Dragana & Radonjić, Ivana & Pantić, Lana & Radivojević, Aleksandar & Pavlović, Mila, 2013. "Possibility of electricity generation using PV solar plants in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 201-218.
    16. Sharma, Vikrant & Kumar, Arun & Sastry, O.S. & Chandel, S.S., 2013. "Performance assessment of different solar photovoltaic technologies under similar outdoor conditions," Energy, Elsevier, vol. 58(C), pages 511-518.
    17. Boonmee, Chaiyant & Plangklang, Boonyang & Watjanatepin, Napat, 2009. "System performance of a three-phase PV-grid-connected system installed in Thailand: Data monitored analysis," Renewable Energy, Elsevier, vol. 34(2), pages 384-389.
    18. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    19. So, Jung Hun & Jung, Young Seok & Yu, Gwon Jong & Choi, Ju Yeop & Choi, Jae Ho, 2007. "Performance results and analysis of 3kW grid-connected PV systems," Renewable Energy, Elsevier, vol. 32(11), pages 1858-1872.
    20. Spertino, Filippo & Corona, Fabio, 2013. "Monitoring and checking of performance in photovoltaic plants: A tool for design, installation and maintenance of grid-connected systems," Renewable Energy, Elsevier, vol. 60(C), pages 722-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Macaulay & Zhongfu Zhou, 2018. "A Fuzzy Logical-Based Variable Step Size P&O MPPT Algorithm for Photovoltaic System," Energies, MDPI, vol. 11(6), pages 1-15, May.
    2. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    3. Freitas, Alessandro M. & Gomes, Rodrigo A.M. & Ferreira, Rafael A.M. & Porto, Matheus P., 2019. "Experimental performance of commercial OPV panels tested outdoor," Renewable Energy, Elsevier, vol. 135(C), pages 1004-1012.
    4. Carvalho, Diego B. & Pinto, Bárbara L. & Guardia, Eduardo C. & Marangon Lima, José W., 2020. "Economic impact of anticipations or delays in the completion of power generation projects in the Brazilian energy market," Renewable Energy, Elsevier, vol. 147(P1), pages 1312-1320.
    5. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2020. "Field Analysis of three different silicon-based Technologies in Composite Climate Condition – Part II – Seasonal assessment and performance degradation rates using statistical tools," Renewable Energy, Elsevier, vol. 147(P1), pages 2102-2117.
    6. Yadav, Amit Kumar & Chandel, S.S., 2017. "Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 955-969.
    7. Walmsley, Timothy G. & Walmsley, Michael R.W. & Varbanov, Petar S. & Klemeš, Jiří J., 2018. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 328-345.
    8. Gravelsins, Armands & Pakere, Ieva & Tukulis, Anrijs & Blumberga, Dagnija, 2019. "Solar power in district heating. P2H flexibility concept," Energy, Elsevier, vol. 181(C), pages 1023-1035.
    9. Saleheen, Mohammed Zeehan & Salema, Arshad Adam & Mominul Islam, Shah Mohammad & Sarimuthu, Charles R. & Hasan, Md Zobaer, 2021. "A target-oriented performance assessment and model development of a grid-connected solar PV (GCPV) system for a commercial building in Malaysia," Renewable Energy, Elsevier, vol. 171(C), pages 371-382.
    10. Kabayo, Jeremiah & Marques, Pedro & Garcia, Rita & Freire, Fausto, 2019. "Life-cycle sustainability assessment of key electricity generation systems in Portugal," Energy, Elsevier, vol. 176(C), pages 131-142.
    11. Babak Ranjgar & Alessandro Niccolai, 2023. "Large-Scale Rooftop Solar Photovoltaic Power Production Potential Assessment: A Case Study for Tehran Metropolitan Area, Iran," Energies, MDPI, vol. 16(20), pages 1-14, October.
    12. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    13. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    14. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    15. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    16. Singh, Rashmi & Sharma, Madhu & Yadav, Kamlesh, 2022. "Degradation and reliability analysis of photovoltaic modules after operating for 12 years: A case study with comparisons," Renewable Energy, Elsevier, vol. 196(C), pages 1170-1186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    2. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Piršl, Danica S., 2015. "Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 423-435.
    3. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    4. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    5. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    6. Dinçer, Furkan, 2011. "Overview of the photovoltaic technology status and perspective in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3768-3779.
    7. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    8. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    9. Emmanuel, Michael & Akinyele, Daniel & Rayudu, Ramesh, 2017. "Techno-economic analysis of a 10 kWp utility interactive photovoltaic system at Maungaraki school, Wellington, New Zealand," Energy, Elsevier, vol. 120(C), pages 573-583.
    10. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    11. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    12. Dobaria, Bhaveshkumar & Pandya, Mahesh & Aware, Mohan, 2016. "Analytical assessment of 5.05 kWp grid tied photovoltaic plant performance on the system level in a composite climate of western India," Energy, Elsevier, vol. 111(C), pages 47-51.
    13. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    14. Amir A. Imam & Yusuf A. Al-Turki & Sreerama Kumar R., 2019. "Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
    15. Visa, Ion & Burduhos, Bogdan & Neagoe, Mircea & Moldovan, Macedon & Duta, Anca, 2016. "Comparative analysis of the infield response of five types of photovoltaic modules," Renewable Energy, Elsevier, vol. 95(C), pages 178-190.
    16. Cañete, Cristina & Carretero, Jesús & Sidrach-de-Cardona, Mariano, 2014. "Energy performance of different photovoltaic module technologies under outdoor conditions," Energy, Elsevier, vol. 65(C), pages 295-302.
    17. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    18. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    19. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    20. Teodoro Adrada Guerra & Julio Amador Guerra & Beatriz Orfao Tabernero & Guillermo De la Cruz García, 2017. "Comparative Energy Performance Analysis of Six Primary Photovoltaic Technologies in Madrid (Spain)," Energies, MDPI, vol. 10(6), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:651-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.