IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp1023-1035.html
   My bibliography  Save this article

Solar power in district heating. P2H flexibility concept

Author

Listed:
  • Gravelsins, Armands
  • Pakere, Ieva
  • Tukulis, Anrijs
  • Blumberga, Dagnija

Abstract

District heating (DH) systems present a great opportunity to increase the proportion of renewable energy used in both heating and cooling. Renewable energy can be integrated into DH to account for heat load and also for power production, which in cogeneration systems is used for both heat generation and transmission.

Suggested Citation

  • Gravelsins, Armands & Pakere, Ieva & Tukulis, Anrijs & Blumberga, Dagnija, 2019. "Solar power in district heating. P2H flexibility concept," Energy, Elsevier, vol. 181(C), pages 1023-1035.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1023-1035
    DOI: 10.1016/j.energy.2019.05.224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219311168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vellini, Michela & Gambini, Marco & Prattella, Valentina, 2017. "Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels," Energy, Elsevier, vol. 138(C), pages 1099-1111.
    2. Kveselis, Vaclovas & Dzenajavičienė, Eugenija Farida & Masaitis, Sigitas, 2017. "Analysis of energy development sustainability: The example of the lithuanian district heating sector," Energy Policy, Elsevier, vol. 100(C), pages 227-236.
    3. Hirvonen, Janne & Kayo, Genku & Hasan, Ala & Sirén, Kai, 2016. "Zero energy level and economic potential of small-scale building-integrated PV with different heating systems in Nordic conditions," Applied Energy, Elsevier, vol. 167(C), pages 255-269.
    4. Nemet, Gregory F. & O'Shaughnessy, Eric & Wiser, Ryan & Darghouth, Naïm R. & Barbose, Galen & Gillingham, Ken & Rai, Varun, 2017. "What factors affect the prices of low-priced U.S. solar PV systems?," Renewable Energy, Elsevier, vol. 114(PB), pages 1333-1339.
    5. Best, Rohan & Burke, Paul J., 2018. "Adoption of solar and wind energy: The roles of carbon pricing and aggregate policy support," Energy Policy, Elsevier, vol. 118(C), pages 404-417.
    6. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    7. Yang, Libing & Entchev, Evgueniy & Rosato, Antonio & Sibilio, Sergio, 2017. "Smart thermal grid with integration of distributed and centralized solar energy systems," Energy, Elsevier, vol. 122(C), pages 471-481.
    8. Ehrlich, Lars G. & Klamka, Jonas & Wolf, André, 2015. "The potential of decentralized power-to-heat as a flexibility option for the german electricity system: A microeconomic perspective," Energy Policy, Elsevier, vol. 87(C), pages 417-428.
    9. Møller Sneum, Daniel & Sandberg, Eli & Koduvere, Hardi & Olsen, Ole Jess & Blumberga, Dagnija, 2018. "Policy incentives for flexible district heating in the Baltic countries," Utilities Policy, Elsevier, vol. 51(C), pages 61-72.
    10. Park, Alex & Lappas, Petros, 2017. "Evaluating demand charge reduction for commercial-scale solar PV coupled with battery storage," Renewable Energy, Elsevier, vol. 108(C), pages 523-532.
    11. Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland & Trømborg, Erik, 2017. "Power-to-heat as a flexibility measure for integration of renewable energy," Energy, Elsevier, vol. 128(C), pages 776-784.
    12. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    13. Dobrotkova, Zuzana & Surana, Kavita & Audinet, Pierre, 2018. "The price of solar energy: Comparing competitive auctions for utility-scale solar PV in developing countries," Energy Policy, Elsevier, vol. 118(C), pages 133-148.
    14. Aslani, Alireza & Helo, Petri & Naaranoja, Marja, 2014. "Role of renewable energy policies in energy dependency in Finland: System dynamics approach," Applied Energy, Elsevier, vol. 113(C), pages 758-765.
    15. Carpaneto, E. & Lazzeroni, P. & Repetto, M., 2015. "Optimal integration of solar energy in a district heating network," Renewable Energy, Elsevier, vol. 75(C), pages 714-721.
    16. Lund, Henrik & Hvelplund, Frede & Ingermann, Karl & Kask, Ulo, 2000. "Estonian energy system Proposals for the implementation of a cogeneration strategy," Energy Policy, Elsevier, vol. 28(10), pages 729-736, August.
    17. Ziemele, Jelena & Pakere, Ieva & Blumberga, Dagnija, 2016. "The future competitiveness of the non-Emissions Trading Scheme district heating systems in the Baltic States," Applied Energy, Elsevier, vol. 162(C), pages 1579-1585.
    18. Schweiger, Gerald & Rantzer, Jonatan & Ericsson, Karin & Lauenburg, Patrick, 2017. "The potential of power-to-heat in Swedish district heating systems," Energy, Elsevier, vol. 137(C), pages 661-669.
    19. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    20. Sandberg, Eli & Kirkerud, Jon Gustav & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2019. "Energy system impacts of grid tariff structures for flexible power-to-district heat," Energy, Elsevier, vol. 168(C), pages 772-781.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ieva Pakere & Armands Gravelsins & Girts Bohvalovs & Liga Rozentale & Dagnija Blumberga, 2021. "Will Aggregator Reduce Renewable Power Surpluses? A System Dynamics Approach for the Latvia Case Study," Energies, MDPI, vol. 14(23), pages 1-21, November.
    2. Saloux, Etienne & Candanedo, José A., 2021. "Model-based predictive control to minimize primary energy use in a solar district heating system with seasonal thermal energy storage," Applied Energy, Elsevier, vol. 291(C).
    3. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2021. "Robust design optimization of a photovoltaic-battery-heat pump system with thermal storage under aleatory and epistemic uncertainty," Energy, Elsevier, vol. 229(C).
    5. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    6. Yonghoon Im, 2022. "Assessment of the Impact of Renewable Energy Expansion on the Technological Competitiveness of the Cogeneration Model," Energies, MDPI, vol. 15(18), pages 1-27, September.
    7. Pakere, Ieva & Blumberga, Dagnija, 2020. "Solar power or solar heat: What will upraise the efficiency of district heating? Multi-criteria analyses approach," Energy, Elsevier, vol. 198(C).
    8. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
    2. Pakere, Ieva & Lauka, Dace & Blumberga, Dagnija, 2018. "Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant," Energy, Elsevier, vol. 154(C), pages 424-432.
    3. Pakere, Ieva & Blumberga, Dagnija, 2020. "Solar power or solar heat: What will upraise the efficiency of district heating? Multi-criteria analyses approach," Energy, Elsevier, vol. 198(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Ieva Pakere & Dace Lauka & Dagnija Blumberga, 2020. "Does the Balance Exist between Cost Efficiency of Different Energy Efficiency Measures? DH Systems Case," Energies, MDPI, vol. 13(19), pages 1-16, October.
    6. Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Jonynas, Rolandas & Puida, Egidijus & Poškas, Robertas & Paukštaitis, Linas & Jouhara, Hussam & Gudzinskas, Juozas & Miliauskas, Gintautas & Lukoševičius, Valdas, 2020. "Renewables for district heating: The case of Lithuania," Energy, Elsevier, vol. 211(C).
    8. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    9. Burke, Paul J. & Widnyana, Jinnie & Anjum, Zeba & Aisbett, Emma & Resosudarmo, Budy & Baldwin, Kenneth G.H., 2019. "Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia," Energy Policy, Elsevier, vol. 132(C), pages 1216-1228.
    10. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Popovski, Eftim & Aydemir, Ali & Fleiter, Tobias & Bellstädt, Daniel & Büchele, Richard & Steinbach, Jan, 2019. "The role and costs of large-scale heat pumps in decarbonising existing district heating networks – A case study for the city of Herten in Germany," Energy, Elsevier, vol. 180(C), pages 918-933.
    12. Monie, Svante W. & Åberg, Magnus, 2023. "Potential to balance load variability, induced by renewable power, using rock cavern thermal energy storage, heat pumps, and combined heat and power in Sweden," Applied Energy, Elsevier, vol. 343(C).
    13. Pizzolato, Alberto & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Centralized control of district heating networks during failure events using discrete adjoint sensitivities," Energy, Elsevier, vol. 184(C), pages 58-72.
    14. Peter D. Lund & Klaus Skytte & Simon Bolwig & Torjus Folsland Bolkesjö & Claire Bergaentzlé & Philipp Andreas Gunkel & Jon Gustav Kirkerud & Antje Klitkou & Hardi Koduvere & Armands Gravelsins & Dagni, 2019. "Pathway Analysis of a Zero-Emission Transition in the Nordic-Baltic Region," Energies, MDPI, vol. 12(17), pages 1-20, August.
    15. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Aleksandar Ivančić & Joaquim Romaní & Jaume Salom & Maria-Victoria Cambronero, 2021. "Performance Assessment of District Energy Systems with Common Elements for Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-22, April.
    17. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    18. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    19. Kouhia, Mikko & Laukkanen, Timo & Holmberg, Henrik & Ahtila, Pekka, 2019. "District heat network as a short-term energy storage," Energy, Elsevier, vol. 177(C), pages 293-303.
    20. Fernqvist, Niklas & Broberg, Sarah & Torén, Johan & Svensson, Inger-Lise, 2023. "District heating as a flexibility service: Challenges in sector coupling for increased solar and wind power production in Sweden," Energy Policy, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1023-1035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.