IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i8p1800-1818.html
   My bibliography  Save this article

A review of principle and sun-tracking methods for maximizing solar systems output

Author

Listed:
  • Mousazadeh, Hossein
  • Keyhani, Alireza
  • Javadi, Arzhang
  • Mobli, Hossein
  • Abrinia, Karen
  • Sharifi, Ahmad

Abstract

Finding energy sources to satisfy the world's growing demand is one of society's foremost challenges for the next half-century. The challenge in converting sunlight to electricity via photovoltaic solar cells is dramatically reducing $/watt of delivered solar electricity. In this context the sun trackers are such devices for efficiency improvement. The diurnal and seasonal movement of earth affects the radiation intensity on the solar systems. Sun-trackers move the solar systems to compensate for these motions, keeping the best orientation relative to the sun. Although using sun-tracker is not essential, its use can boost the collected energy 10-100% in different periods of time and geographical conditions. However, it is not recommended to use tracking system for small solar panels because of high energy losses in the driving systems. It is found that the power consumption by tracking device is 2-3% of the increased energy. In this paper different types of sun-tracking systems are reviewed and their cons and pros are discussed. The most efficient and popular sun-tracking device was found to be in the form of polar-axis and azimuth/elevation types.

Suggested Citation

  • Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1800-1818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00031-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Jumaily, Khalil E.J. & Al-Kaysi, MunadhilA.K.A., 1998. "The study of the performance and efficiency of flat linear Fresnel lens collector with sun tracking system in Iraq," Renewable Energy, Elsevier, vol. 14(1), pages 41-48.
    2. Cañada, J. & Utrillas, M.P. & Martinez-Lozano, J.A. & Pedrós, R. & Gómez-Amo, J.L. & Maj, A., 2007. "Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330–1100nm range," Renewable Energy, Elsevier, vol. 32(12), pages 2053-2068.
    3. Tomson, Teolan, 2008. "Discrete two-positional tracking of solar collectors," Renewable Energy, Elsevier, vol. 33(3), pages 400-405.
    4. Nuwayhid, R.Y. & Mrad, F. & Abu-Said, R., 2001. "The realization of a simple solar tracking concentrator for university research applications," Renewable Energy, Elsevier, vol. 24(2), pages 207-222.
    5. Oladiran, M. T., 1995. "Mean global radiation captured by inclined collectors at various surface azimuth angles in Nigeria," Applied Energy, Elsevier, vol. 52(4), pages 317-330.
    6. Durisch, W. & Urban, J. & Smestad, G., 1996. "Characterisation of solar cells and modules under actual operating conditions," Renewable Energy, Elsevier, vol. 8(1), pages 359-366.
    7. Bakos, George C., 2006. "Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement," Renewable Energy, Elsevier, vol. 31(15), pages 2411-2421.
    8. Al-Mohamad, Ali, 2004. "Efficiency improvements of photo-voltaic panels using a Sun-tracking system," Applied Energy, Elsevier, vol. 79(3), pages 345-354, November.
    9. Mumba, J., 1995. "Development of a photovoltaic powered forced circulation grain dryer for use in the tropics," Renewable Energy, Elsevier, vol. 6(7), pages 855-862.
    10. Ibrahim, Said M.A., 1996. "The forced circulation performance of a sun tracking parabolic concentrator collector," Renewable Energy, Elsevier, vol. 9(1), pages 568-571.
    11. Abu-Khader, Mazen M. & Badran, Omar O. & Abdallah, Salah, 2008. "Evaluating multi-axes sun-tracking system at different modes of operation in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 864-873, April.
    12. Roth, P. & Georgiev, A. & Boudinov, H., 2004. "Design and construction of a system for sun-tracking," Renewable Energy, Elsevier, vol. 29(3), pages 393-402.
    13. Palavras, I. & Bakos, G.C., 2006. "Development of a low-cost dish solar concentrator and its application in zeolite desorption," Renewable Energy, Elsevier, vol. 31(15), pages 2422-2431.
    14. Abouzeid, M., 2001. "Use of a reluctance stepper motor for solar tracking based on a programmable logic array (PLA) controller," Renewable Energy, Elsevier, vol. 23(3), pages 551-560.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    2. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    3. Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.
    4. Abdelghani-Idrissi, M.A. & Khalfallaoui, S. & Seguin, D. & Vernières-Hassimi, L. & Leveneur, S., 2018. "Solar tracker for enhancement of the thermal efficiency of solar water heating system," Renewable Energy, Elsevier, vol. 119(C), pages 79-94.
    5. Ahmad, Salsabila & Shafie, Suhaidi & Ab Kadir, Mohd Zainal Abidin & Ahmad, Noor Syafawati, 2013. "On the effectiveness of time and date-based sun positioning solar collector in tropical climate: A case study in Northern Peninsular Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 635-642.
    6. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    7. Hafez, A.Z. & Yousef, A.M. & Harag, N.M., 2018. "Solar tracking systems: Technologies and trackers drive types – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 754-782.
    8. Yao, Yingxue & Hu, Yeguang & Gao, Shengdong & Yang, Gang & Du, Jinguang, 2014. "A multipurpose dual-axis solar tracker with two tracking strategies," Renewable Energy, Elsevier, vol. 72(C), pages 88-98.
    9. Chin, C.S. & Babu, A. & McBride, W., 2011. "Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink," Renewable Energy, Elsevier, vol. 36(11), pages 3075-3090.
    10. Vieira, R.G. & Guerra, F.K.O.M.V. & Vale, M.R.B.G. & Araújo, M.M., 2016. "Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 672-681.
    11. Rafeeu, Y. & Ab Kadir, M.Z.A., 2012. "Thermal performance of parabolic concentrators under Malaysian environment: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3826-3835.
    12. Gharat, Punit V. & Bhalekar, Snehal S. & Dalvi, Vishwanath H. & Panse, Sudhir V. & Deshmukh, Suresh P. & Joshi, Jyeshtharaj B., 2021. "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Yilmaz, Saban & Riza Ozcalik, Hasan & Dogmus, Osman & Dincer, Furkan & Akgol, Oguzhan & Karaaslan, Muharrem, 2015. "Design of two axes sun tracking controller with analytically solar radiation calculations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 997-1005.
    14. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    15. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    16. Chiemeka Onyeka Okoye & Serkan Abbasoglu, 2013. "Empirical Investigation of Fixed and Dual Axis Sun Tracking Photovoltaic System Installations in Turkish Republic of Northern Cyprus," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 3(5), pages 440-453, May.
    17. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    18. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Mirzaei, Mohsen & Mohiabadi, Mostafa Zamani, 2018. "Comparative analysis of energy yield of different tracking modes of PV systems in semiarid climate conditions: The case of Iran," Renewable Energy, Elsevier, vol. 119(C), pages 400-409.
    20. Şenpinar, Ahmet & Cebeci, Mehmet, 2012. "Evaluation of power output for fixed and two-axis tracking PVarrays," Applied Energy, Elsevier, vol. 92(C), pages 677-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1800-1818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.