IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2213-d222283.html
   My bibliography  Save this article

Exploring a Moderate Operation Scale in China’s Grain Production: A Perspective on the Costs of Machinery Services

Author

Listed:
  • Yu Xu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Liangjie Xin

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Xiubin Li

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Minghong Tan

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Yahui Wang

    (School of Geographical Sciences, Southwest University, Chongqing 400715, China)

Abstract

Due to the indivisibility of agricultural machinery in production, limited farm sizes have reduced mechanization efficiency and increased the cost of grain production in China. As a result, the development of a moderate-scale farming system has been proposed by academic communities and policy makers. However, it is still hotly debated how to determine a moderate farm scale. We offer a new perspective on the costs of machinery services. This manuscript employs the threshold model and uses the nationally representative data from the 2015 China Rural Household Panel Survey (CRHPS) to investigate the role of farm size expansion relative to per area machinery services expenditures (PAMSE). The empirical results reveal that there is a nonlinear relation between the farm size and PAMSE. Specifically, farm size expansion can reduce the PAMSE by improving mechanization efficiency in all cases, while the magnitude of cost-saving is progressively reduced in the process of farm scale expansion. In particular, a 1 mu (1 mu = 1/15 ha) increase in the farm scale could only lead to a 0.3% decrease in the PAMSE when the farm size exceeded 50 mu, which indicates that 50 mu is a minimum efficient farm scale to achieve most economies of scale. Therefore, we suggest that persistent efforts should be devoted to improving farmland circulation efficiency and developing scale farms. More importantly, governmental supporting policies, such as agricultural subsidies, need to attach more importance to these large farms.

Suggested Citation

  • Yu Xu & Liangjie Xin & Xiubin Li & Minghong Tan & Yahui Wang, 2019. "Exploring a Moderate Operation Scale in China’s Grain Production: A Perspective on the Costs of Machinery Services," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2213-:d:222283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jikun Huang & Jiping Ding, 2016. "Institutional innovation and policy support to facilitate small-scale farming transformation in China," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 227-237, November.
    2. Justin Yifu Lin, 1991. "Education and Innovation Adoption in Agriculture: Evidence from Hybrid Rice in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 713-723.
    3. Deininger, Klaus & Jin, Songqing, 2005. "The potential of land rental markets in the process of economic development: Evidence from China," Journal of Development Economics, Elsevier, vol. 78(1), pages 241-270, October.
    4. Wang, Xiaobing & Yamauchi, Futoshi & Otsuka, Keijiro & Huang, Jikun, 2016. "Wage Growth, Landholding, and Mechanization in Chinese Agriculture," World Development, Elsevier, vol. 86(C), pages 30-45.
    5. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    6. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    7. Fang Cai & Meiyan Wang, 2008. "A Counterfactual Analysis on Unlimited Surplus Labor in Rural China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 16(1), pages 51-65, January.
    8. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    9. Qiao, Fangbin, 2017. "Increasing wage, mechanization, and agriculture production in China," China Economic Review, Elsevier, vol. 46(C), pages 249-260.
    10. Jin Yang & Zuhui Huang & Xiaobo Zhang & Thomas Reardon, 2013. "The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1245-1251.
    11. Keijiro Otsuka, 2013. "Food insecurity, income inequality, and the changing comparative advantage in world agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 7-18, November.
    12. Jikun Huang & Yangjie Wang & Jinxia Wang, 2015. "Farmers' Adaptation to Extreme Weather Events through Farm Management and Its Impacts on the Mean and Risk of Rice Yield in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 602-617.
    13. Rada, Nicholas & Wang, Chenggang & Qin, Lijian, 2015. "Subsidy or market reform? Rethinking China’s farm consolidation strategy," Food Policy, Elsevier, vol. 57(C), pages 93-103.
    14. Zhang, Xiaobo & Yang, Jin & Wang, Shenglin, 2011. "China has reached the Lewis turning point," China Economic Review, Elsevier, vol. 22(4), pages 542-554.
    15. Diao, Xinshen & Cossar, Frances & Houssou, Nazaire & Kolavalli, Shashidhara, 2014. "Mechanization in Ghana: Emerging demand, and the search for alternative supply models," Food Policy, Elsevier, vol. 48(C), pages 168-181.
    16. Calum G. Turvey & Rong Kong, 2009. "Business and financial risks of small farm households in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 1(2), pages 155-172, January.
    17. Xiaobing Wang & Futoshi Yamauchi & Jikun Huang, 2016. "Rising wages, mechanization, and the substitution between capital and labor: evidence from small scale farm system in China," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 309-317, May.
    18. Siyan Zeng & Fengwu Zhu & Fu Chen & Man Yu & Shaoliang Zhang & Yongjun Yang, 2018. "Assessing the Impacts of Land Consolidation on Agricultural Technical Efficiency of Producers: A Survey from Jiangsu Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    19. Zhang, Qian & Sun, Zhongxiao & Huang, Wei, 2018. "Does land perform well for corn planting? An empirical study on land use efficiency in China," Land Use Policy, Elsevier, vol. 74(C), pages 273-280.
    20. Lu, Hua & Xie, Hualin & He, Yafen & Wu, Zhilong & Zhang, Xinmin, 2018. "Assessing the impacts of land fragmentation and plot size on yields and costs: A translog production model and cost function approach," Agricultural Systems, Elsevier, vol. 161(C), pages 81-88.
    21. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    22. Ito, Junichi & Bao, Zongshun & Ni, Jing, 2016. "Land rental development via institutional innovation in rural Jiangsu, China," Food Policy, Elsevier, vol. 59(C), pages 1-11.
    23. Yamauchi, Futoshi, 2016. "Rising real wages, mechanization and growing advantage of large farms: Evidence from Indonesia," Food Policy, Elsevier, vol. 58(C), pages 62-69.
    24. William J. Brown & Richard A. Schoney, 1985. "Calculating Least-Cost Machinery Size for Grain Farms Using Electronic Spreadsheets and Microcomputers," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 33(1), pages 47-65, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Long & Lu, Hua & Gao, Qiang & Lu, Hualiang, 2022. "Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China," Land Use Policy, Elsevier, vol. 115(C).
    2. Xi Yu & Xiyang Yin & Yuying Liu & Dongmei Li, 2021. "Do Agricultural Machinery Services Facilitate Land Transfer? Evidence from Rice Farmers in Sichuan Province, China," Land, MDPI, vol. 10(5), pages 1-14, April.
    3. Xiaoshi Zhou & Wanglin Ma & Gucheng Li, 2018. "Draft Animals, Farm Machines and Sustainable Agricultural Production: Insight from China," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    4. Wang, Xiaobing & Yamauchi, Futoshi & Huang, Jikun & Rozelle, Scott, 2020. "What constrains mechanization in Chinese agriculture? Role of farm size and fragmentation," China Economic Review, Elsevier, vol. 62(C).
    5. Fangbin Qiao, 2020. "The Impact of Agricultural Service on Grain Production in China," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    6. Liu, Yan & Heerink, Nico & Li, Fan & Shi, Xiaoping, 2022. "Do agricultural machinery services promote village farmland rental markets? Theory and evidence from a case study in the North China plain," Land Use Policy, Elsevier, vol. 122(C).
    7. Liu, Xinyue & Wang, Xiaobing & Xu, Zhigang, 2023. "The polarization and constraints of scale farming in China under the impact of rising wages," Journal of Asian Economics, Elsevier, vol. 86(C).
    8. Siyu Yang & Wei Li, 2022. "The Impact of Socialized Agricultural Machinery Services on Land Productivity: Evidence from China," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    9. Zhoufu Yan & Shurui Zhang & Fangwei Wu & Binlei Gong, 2023. "Increasing Wages, Factor Substitution, and Cropping Pattern Changes in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 31(5), pages 190-214, September.
    10. Paudel, Gokul P. & KC, Dilli Bahadur & Rahut, Dil Bahadur & Justice, Scott E. & McDonald, Andrew J., 2019. "Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal," Land Use Policy, Elsevier, vol. 85(C), pages 104-113.
    11. Yuanjie Zhang & Shichao Yuan & Jian Wang & Jian Cheng & Daolin Zhu, 2022. "How Do the Different Types of Land Costs Affect Agricultural Crop-Planting Selections in China?," Land, MDPI, vol. 11(11), pages 1-18, October.
    12. Zhang, Jian & Mishra, Ashok K. & Ma, Xianlei, 2023. "Mechanism of Chinese farmers’ land rental participation: The role of invisible markets and public intervention," Food Policy, Elsevier, vol. 117(C).
    13. Idelphonse O. Saliou & Afio Zannou & Augustin K. N. Aoudji & Albert N. Honlonkou, 2020. "Drivers of Mechanization in Cotton Production in Benin, West Africa," Agriculture, MDPI, vol. 10(11), pages 1-13, November.
    14. Keijiro Otsuka, 2021. "Changing Relationship between Farm Size and Productivity and Its Implications for Philippine Agriculture," Discussion Papers 2102, Graduate School of Economics, Kobe University.
    15. Li, Xinyi & Ito, Junichi, 2021. "An empirical study of land rental development in rural Gansu, China: The role of agricultural cooperatives and transaction costs," Land Use Policy, Elsevier, vol. 109(C).
    16. Wei Li & Xipan Wei & Ruixiang Zhu & Kangquan Guo, 2018. "Study on Factors Affecting the Agricultural Mechanization Level in China Based on Structural Equation Modeling," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    17. Wangda Liao & Fusheng Zeng & Meseret Chanieabate, 2022. "Mechanization of Small-Scale Agriculture in China: Lessons for Enhancing Smallholder Access to Agricultural Machinery," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    18. Siyu Yang & Wei Li, 2023. "The Impact of Socialized Agricultural Machinery Services on the Labor Transfer of Maize Growers," Agriculture, MDPI, vol. 13(6), pages 1-21, June.
    19. Meng Qu & Kai Zhao & Renhui Zhang & Yuan Gao & Jing Wang, 2022. "Divergence between Willingness and Behavior of Farmers to Purchase Socialized Agricultural Services: From a Heterogeneity Perspective of Land Scale," Land, MDPI, vol. 11(8), pages 1-21, July.
    20. Belton, Ben & Win, Myat Thida & Zhang, Xiaobo & Filipski, Mateusz, 2021. "The rapid rise of agricultural mechanization in Myanmar," Food Policy, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2213-:d:222283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.