IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1202-d208719.html
   My bibliography  Save this article

Impact of CARB’s Tailpipe Emission Standard Policy on CO 2 Reduction among the U.S. States

Author

Listed:
  • Jaewon Lim

    (School of Public Policy & Leadership, Greenspun College of Urban Affairs, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA)

  • DooHwan Won

    (Department of Economics, College of Economics and International Trade, Pusan National University, Busandaehak-ro, 63beon-gil 2, Geumjeong-gu, Busan 46241, Korea)

Abstract

U.S.Environmental Protection Agency (EPA) set the nationwide emission standard policy, but each state in the U.S. has an option to follow the higher emission standard policy set by CARB (California Air Resources Board) in 2004. There are 14 “CARB states” that follow California’s more restrictive standards. The purpose of this paper is to examine the impact of CARB’s tailpipe emission standard policy. Using the panel dataset for 49 U.S. states over a 28-year study period (1987–2015), this paper found the long-term policy effect in reducing CO 2 emission from CARB’s tailpipe standard, and its long-run effect is 5.4 times higher than the short-run effect. The equivalent policy effect of the CARB emission standard in CO 2 reduction can be achieved by raising gasoline price by 145.43%. Also, if 26.0% of petroleum consumed for transportation is substituted by alternative clean fuels (natural gas or electricity), it will have a comparable policy effect in CO 2 reduction. Findings in this study support to continue the collaborative efforts among the EPA, National Highway Traffic Safety Administration (NHTSA), and California in order to achieve the CO 2 reduction goal set by CARB and adopted by the EPA in 2012. The packaged policy approach rooted in persistent public and political support is necessary for successful policy implementation.

Suggested Citation

  • Jaewon Lim & DooHwan Won, 2019. "Impact of CARB’s Tailpipe Emission Standard Policy on CO 2 Reduction among the U.S. States," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1202-:d:208719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    2. Siskos, Pelopidas & Capros, Pantelis & De Vita, Alessia, 2015. "CO2 and energy efficiency car standards in the EU in the context of a decarbonisation strategy: A model-based policy assessment," Energy Policy, Elsevier, vol. 84(C), pages 22-34.
    3. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    4. Jörg Breitung & Samarjit Das, 2005. "Panel unit root tests under cross‐sectional dependence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 414-433, November.
    5. Sanz, M. Teresa & Cansino, José M. & González-Limón, José M. & Santamaría, Marta & Yñiguez, Rocío, 2014. "Economic assessment of CO2 emissions savings in Spain associated with the use of biofuels for the transport sector in 2010," Utilities Policy, Elsevier, vol. 29(C), pages 25-32.
    6. Rentziou, Aikaterini & Gkritza, Konstantina & Souleyrette, Reginald R., 2012. "VMT, energy consumption, and GHG emissions forecasting for passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 487-500.
    7. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    8. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    9. Tian, Yihui & Zhu, Qinghua & Lai, Kee-hung & Venus Lun, Y.H., 2014. "Analysis of greenhouse gas emissions of freight transport sector in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 43-52.
    10. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    11. Pongthanaisawan, Jakapong & Sorapipatana, Chumnong, 2013. "Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options," Applied Energy, Elsevier, vol. 101(C), pages 288-298.
    12. Graham, Daniel J. & Crotte, Amado & Anderson, Richard J., 2009. "A dynamic panel analysis of urban metro demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 787-794, September.
    13. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    14. Pedroni, Peter, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    15. Pock, Markus, 2010. "Gasoline demand in Europe: New insights," Energy Economics, Elsevier, vol. 32(1), pages 54-62, January.
    16. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    17. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    18. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    19. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    20. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    21. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    22. Lucas W. Davis & Lutz Kilian, 2011. "Estimating the effect of a gasoline tax on carbon emissions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(7), pages 1187-1214, November.
    23. Vedantham, Anu & Oppenheimer, Michael, 1998. "Long-term scenarios for aviation: Demand and emissions of CO2 and NOx," Energy Policy, Elsevier, vol. 26(8), pages 625-641, July.
    24. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    25. Saboori, Behnaz & Sapri, Maimunah & bin Baba, Maizan, 2014. "Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)'s transport sector: A fully modified bi-directional relationship approach," Energy, Elsevier, vol. 66(C), pages 150-161.
    26. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    27. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    28. González, Rosa Marina & Marrero, Gustavo A., 2012. "The effect of dieselization in passenger cars emissions for Spanish regions: 1998–2006," Energy Policy, Elsevier, vol. 51(C), pages 213-222.
    29. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    30. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    31. Mazzarino, Marco, 2000. "The economics of the greenhouse effect: evaluating the climate change impact due to the transport sector in Italy," Energy Policy, Elsevier, vol. 28(13), pages 957-966, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansi Wang & Noman Arshed & Mubbasher Munir & Samma Faiz Rasool & Weiwen Lin, 2021. "Investigation of the STIRPAT model of environmental quality: a case of nonlinear quantile panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12217-12232, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    2. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    3. Yongfu Huang, 2011. "Private investment and financial development in a globalized world," Empirical Economics, Springer, vol. 41(1), pages 43-56, August.
    4. Gharehgozli, Orkideh, 2021. "An empirical comparison between a regression framework and the Synthetic Control Method," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 70-81.
    5. Sung, Bongsuk & Song, Woo-Yong & Park, Sang-Do, 2018. "How foreign direct investment affects CO2 emission levels in the Chinese manufacturing industry: Evidence from panel data," Economic Systems, Elsevier, vol. 42(2), pages 320-331.
    6. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    7. Dimelis, Sophia P. & Papaioannou, Sotiris K., 2011. "ICT growth effects at the industry level: A comparison between the US and the EU," Information Economics and Policy, Elsevier, vol. 23(1), pages 37-50, March.
    8. Jaunky, Vishal Chandr, 2011. "The CO2 emissions-income nexus: Evidence from rich countries," Energy Policy, Elsevier, vol. 39(3), pages 1228-1240, March.
    9. Ronald MacDonald & Flávio Vieira, "undated". "A panel data investigation of real exchange rate misalignment and growth," Working Papers 2010_13, Business School - Economics, University of Glasgow.
    10. Kouvavas, Omiros, 2013. "Political Budget Cycles Revisited, the Case for Social Capital," MPRA Paper 57504, University Library of Munich, Germany, revised 15 Sep 2013.
    11. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    12. Jaunky, Vishal Chandr, 2013. "A cointegration and causality analysis of copper consumption and economic growth in rich countries," Resources Policy, Elsevier, vol. 38(4), pages 628-639.
    13. Sloboda, Brian W. & Sissoko, Yaya, 2020. "Determinants of Economic Growth in ECOWAS Countries: An Empirical Investigation," African Journal of Economic Review, African Journal of Economic Review, vol. 8(2), July.
    14. Jaunky, Vishal Chandr, 2012. "Is there a material Kuznets curve for aluminium? evidence from rich countries," Resources Policy, Elsevier, vol. 37(3), pages 296-307.
    15. Alessio Ciarlone, 2019. "The relationship between financial development and growth: the case of emerging Europe," Questioni di Economia e Finanza (Occasional Papers) 521, Bank of Italy, Economic Research and International Relations Area.
    16. Atilla Çifter, 2015. "Bank concentration and non-performing loans in Central and Eastern European countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(1), pages 117-137, February.
    17. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    18. Ardeshiri, Mansour & Moghaddasi, Reza & Yazdani, Saeed & Mohamadinejad, Amir, . "Trade Openness and Spatial Distribution of Manufacturing Industries: Iranian Provincial Evidence," Asian Journal of Applied Economics, Kasetsart University, Center for Applied Economics Research, vol. 26(1).
    19. Vogel, Johanna, 2013. "Regional Convergence in Europe: A Dynamic Heterogeneous Panel Approach," MPRA Paper 51794, University Library of Munich, Germany.
    20. Amri, Fethi, 2016. "The relationship amongst energy consumption, foreign direct investment and output in developed and developing Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 694-702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1202-:d:208719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.