IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5758-d277533.html
   My bibliography  Save this article

Unit-Based Emissions Inventory for Electric Power Systems in Kuwait: Current Status and Future Predictions

Author

Listed:
  • Nawaf S. Alhajeri

    (Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait)

  • Fahad M. Al-Fadhli

    (Department of Chemical Engineering, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait)

  • Ahmed Z. Aly

    (Department of Chemical Engineering, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait)

Abstract

Obtaining accurate estimates of emissions from electric power systems is essential for predicting air quality and evaluating the effectiveness of any future control technologies. This paper aimed to develop unit-based emissions inventories for electric power systems in Kuwait using different parameters, including fuel specifications and consumption, combustion technology and its efficiency, unit capacity, and boiler type. The study also estimated the future emissions of NOx, SO 2 , CO, CO 2 , and PM 10 up to the year 2030 using a multivariate regression model in addition to predicting future energy demand. The results showed that annual (2010–2015) emissions of all air pollutants, excluding SO 2 and PM 10 , increased over the study period. CO had the greatest increase of 41.9%, whereas SO 2 levels decreased the most by 13% over the 2010 levels, due to the replacement of heavy fuel oil. Energy consumption in 2015 stood at approximately 86 PJ, with natural gas, gas oil, crude oil, and heavy fuel oil making up 51.2%, 10.7%, 3.1%, and 35%, respectively. Energy demand was projected to grow at an annualized rate of 2.8% by 2030 compared to 2015 levels. The required installed capacity to meet this demand was estimated to be approximately 21.8 GW (a 34% increase in capacity compared to 2015 levels). The projected emission rates showed that, of the five air pollutants, SO 2 and PM 10 are expected to decrease by 2030 by 34% and 11%, respectively. However, peak monthly emissions of SO 2 would still only be 14% lower compared to the 2015 monthly average. In contrast, emission levels are projected to increase by 34.3%, 54.8%, and 71.8% for CO 2 , NOx, and CO, respectively, by 2030 compared to 2015 levels. Accordingly, a more ambitious target of renewables penetration needs to be adopted to reduce emission levels going forward.

Suggested Citation

  • Nawaf S. Alhajeri & Fahad M. Al-Fadhli & Ahmed Z. Aly, 2019. "Unit-Based Emissions Inventory for Electric Power Systems in Kuwait: Current Status and Future Predictions," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5758-:d:277533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Say, Nuriye Peker & Yucel, Muzaffer, 2006. "Energy consumption and CO2 emissions in Turkey: Empirical analysis and future projection based on an economic growth," Energy Policy, Elsevier, vol. 34(18), pages 3870-3876, December.
    2. Al-Ghandoor, A. & Al-Hinti, I. & Jaber, J.O. & Sawalha, S.A., 2008. "Electricity consumption and associated GHG emissions of the Jordanian industrial sector: Empirical analysis and future projection," Energy Policy, Elsevier, vol. 36(1), pages 258-267, January.
    3. Richard Heede, 2014. "Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010," Climatic Change, Springer, vol. 122(1), pages 229-241, January.
    4. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2011. "Fuel consumption and emission prediction by Iranian power plants until 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1575-1592, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamad M. Alhajeri & Abdulrahman Almutairi & Abdulrahman Alenezi & Faisal Alshammari, 2020. "Energy Demand in the State of Kuwait During the Covid-19 Pandemic: Technical, Economic, and Environmental Perspectives," Energies, MDPI, vol. 13(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    2. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    3. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    4. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    5. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    6. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    7. Hörisch, Jacob & Ortas, Eduardo & Schaltegger, Stefan & Álvarez, Igor, 2015. "Environmental effects of sustainability management tools: An empirical analysis of large companies," Ecological Economics, Elsevier, vol. 120(C), pages 241-249.
    8. Gerard Farias & Christine Farias & Isabella Krysa & Joel Harmon, 2020. "Sustainability Mindsets for Strategic Management: Lifting the Yoke of the Neo-Classical Economic Perspective," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    9. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Ozturk, Ilhan & Acaravci, Ali, 2010. "CO2 emissions, energy consumption and economic growth in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3220-3225, December.
    11. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Jayme Walenta, 2020. "Climate risk assessments and science‐based targets: A review of emerging private sector climate action tools," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    13. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    14. Aastvedt, Tonje Marthinsen & Behmiri, Niaz Bashiri & Lu, Li, 2021. "Does green innovation damage financial performance of oil and gas companies?," Resources Policy, Elsevier, vol. 73(C).
    15. Chhetri, Netra & Ghimire, Rajiv & Wagner, Melissa & Wang, Meng, 2020. "Global citizen deliberation: Case of world-wide views on climate and energy," Energy Policy, Elsevier, vol. 147(C).
    16. Muhammad, Shahbaz & Lean, Hooi Hooi & Muhammad, Shahbaz Shabbir, 2011. "Environmental Kuznets Curve and the role of energy consumption in Pakistan," MPRA Paper 34929, University Library of Munich, Germany, revised 22 Nov 2011.
    17. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    18. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    19. Sujan Chandra Paul & Md. Harun Or Rosid & Md. Jamil Sharif & Anjuman Ara Rajonee, 2021. "Foreign Direct Investment and CO2, CH4, N2O, Greenhouse Gas Emissions: A Cross Country Study," International Journal of Economics and Financial Issues, Econjournals, vol. 11(4), pages 97-104.
    20. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5758-:d:277533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.