IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3672-d245593.html
   My bibliography  Save this article

Global Sustainability Crossroads : A Participatory Simulation Game to Educate in the Energy and Sustainability Challenges of the 21st Century

Author

Listed:
  • Iñigo Capellán-Pérez

    (Research Group on Energy, Economy and System Dynamics, Escuela de Ingenierías Industriales, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain
    Systems Engineering and Automatic Control, Escuela de Ingenierías Industriales, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain)

  • David Álvarez-Antelo

    (Research Group on Energy, Economy and System Dynamics, Escuela de Ingenierías Industriales, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain)

  • Luis J. Miguel

    (Research Group on Energy, Economy and System Dynamics, Escuela de Ingenierías Industriales, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain
    Systems Engineering and Automatic Control, Escuela de Ingenierías Industriales, Paseo del Cauce s/n, University of Valladolid, 47011 Valladolid, Spain)

Abstract

There is a general need to facilitate citizens’ understanding of the global sustainability problem with the dual purpose of raising their awareness of the seriousness of the problem and helping them get closer to understanding the complexity of the solutions. Here, the design and application of the participatory simulation game Global Sustainability Crossroads is described, based on a global state-of-the-art energy–economy–environment model, which creates a virtual scenario where the participants are confronted with the design of climate mitigation strategies as well as the social, economic, and environmental consequences of decisions. The novelty of the game rests on the global scope and the representation of the drivers of anthropogenic emissions within the MEDEAS-World model, combined with a participatory simulation group dynamic flexible enough to be adapted to a diversity of contexts and participants. The performance of 13 game workshops with ~420 players has shown it has a significant pedagogical potential: the game is able to generate discussions on crucial topics which are usually outside the public realm such as the relationship between economic growth and sustainability, the role of technology, how human desires are limited by biophysical constraints or the possibility of climate tipping points.

Suggested Citation

  • Iñigo Capellán-Pérez & David Álvarez-Antelo & Luis J. Miguel, 2019. "Global Sustainability Crossroads : A Participatory Simulation Game to Educate in the Energy and Sustainability Challenges of the 21st Century," Sustainability, MDPI, vol. 11(13), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3672-:d:245593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kowalski, Katharina & Stagl, Sigrid & Madlener, Reinhard & Omann, Ines, 2009. "Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1063-1074, September.
    2. Haberl, Helmut, 2006. "The global socioeconomic energetic metabolism as a sustainability problem," Energy, Elsevier, vol. 31(1), pages 87-99.
    3. Kevin Anderson & Alice Bows, 2012. "A new paradigm for climate change," Nature Climate Change, Nature, vol. 2(9), pages 639-640, September.
    4. Fouquet, Roger, 2010. "The slow search for solutions: Lessons from historical energy transitions by sector and service," Energy Policy, Elsevier, vol. 38(11), pages 6586-6596, November.
    5. Dietz, Simon & Stern, Nicholas, 2015. "Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions," LSE Research Online Documents on Economics 58406, London School of Economics and Political Science, LSE Library.
    6. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    7. Sterman, John., 1994. "Learning in and about complex systems," Working papers 3660-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    8. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    9. Paul R. Ehrlich & Peter M. Kareiva & Gretchen C. Daily, 2012. "Securing natural capital and expanding equity to rescale civilization," Nature, Nature, vol. 486(7401), pages 68-73, June.
    10. Ortzi Akizu & Gorka Bueno & Iñaki Barcena & Erol Kurt & Nurettin Topaloğlu & Jose Manuel Lopez-Guede, 2018. "Contributions of Bottom-Up Energy Transitions in Germany: A Case Study Analysis," Energies, MDPI, vol. 11(4), pages 1-21, April.
    11. Narasimha D. Rao & Keywan Riahi & Arnulf Grubler, 2014. "Climate impacts of poverty eradication," Nature Climate Change, Nature, vol. 4(9), pages 749-751, September.
    12. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    13. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    14. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    15. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    16. Jason S. Wu & Joey J. Lee, 2015. "Climate change games as tools for education and engagement," Nature Climate Change, Nature, vol. 5(5), pages 413-418, May.
    17. Simon Dietz & Nicholas Stern, 2015. "Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus' Framework Supports Deep Cuts in Carbon Emissions," Economic Journal, Royal Economic Society, vol. 0(583), pages 574-620, March.
    18. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    19. van Sluisveld, Mariësse A.E. & Martínez, Sara Herreras & Daioglou, Vassilis & van Vuuren, Detlef P., 2016. "Exploring the implications of lifestyle change in 2°C mitigation scenarios using the IMAGE integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 309-319.
    20. Detlef Vuuren & James Edmonds & Mikiko Kainuma & Keywan Riahi & John Weyant, 2011. "A special issue on the RCPs," Climatic Change, Springer, vol. 109(1), pages 1-4, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Fox & Victoria Campbell-Arvai & Mark Lindquist & Derek Van Berkel & Ramiro Serrano-Vergel, 2022. "Gamifying Decision Support Systems to Promote Inclusive and Engaged Urban Resilience Planning," Urban Planning, Cogitatio Press, vol. 7(2), pages 239-252.
    2. Jakub Swacha & Rytis Maskeliūnas & Robertas Damaševičius & Audrius Kulikajevas & Tomas Blažauskas & Karolina Muszyńska & Agnieszka Miluniec & Magdalena Kowalska, 2021. "Introducing Sustainable Development Topics into Computer Science Education: Design and Evaluation of the Eco JSity Game," Sustainability, MDPI, vol. 13(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaika, Dimitra & Zervas, Efthimios, 2013. "The environmental Kuznets curve (EKC) theory. Part B: Critical issues," Energy Policy, Elsevier, vol. 62(C), pages 1403-1411.
    2. B. Venkatraja, 2021. "Does China exhibit any evidence of an Environmental Kuznets Curve? An ARDL bounds testing approach," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 88-110,111-.
    3. Thomas Bassetti & Nikos Benos & Stelios Karagiannis, 2013. "CO 2 Emissions and Income Dynamics: What Does the Global Evidence Tell Us?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 101-125, January.
    4. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    5. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    6. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    7. Florian Grosset & Phu Nguyen Van, 2016. "Consommation d’énergie et croissance économique en Afrique subsaharienne," Mondes en développement, De Boeck Université, vol. 0(4), pages 25-42.
    8. Mônica Bahia Schlee & Kenneth R. Tamminga & Vera Regina Tangari, 2012. "A Method for Gauging Landscape Change as a Prelude to Urban Watershed Regeneration: The Case of the Carioca River, Rio de Janeiro," Sustainability, MDPI, vol. 4(9), pages 1-45, August.
    9. Luzzati, T. & Orsini, M., 2009. "Investigating the energy-environmental Kuznets curve," Energy, Elsevier, vol. 34(3), pages 291-300.
    10. Valeria Costantini & Chiara Martini, 2010. "A Modified Environmental Kuznets Curve for sustainable development assessment using panel data," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 84-122.
    11. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    12. Myo Myo Htike & Anil Shrestha & Makoto Kakinaka, 2022. "Investigating whether the environmental Kuznets curve hypothesis holds for sectoral CO2 emissions: evidence from developed and developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12712-12739, November.
    13. Devleena Chakravarty & Sabuj Kumar Mandal, 2019. "Environmental Kuznets curve for local and global pollutants: application of GMM and random coefficient panel data models," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 21(2), pages 212-233, December.
    14. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
    15. Davor Mance & Siniša Vilke & Borna Debelić, 2020. "Sustainable Governance of Coastal Areas and Tourism Impact on Waste Production: Panel Analysis of Croatian Municipalities," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    16. Managi, Shunsuke, 2006. "Are there increasing returns to pollution abatement? Empirical analytics of the Environmental Kuznets Curve in pesticides," Ecological Economics, Elsevier, vol. 58(3), pages 617-636, June.
    17. Zhang, Yufu & Tachibana, Satoshi & Nagata, Shin, 2006. "Impact of socio-economic factors on the changes in forest areas in China," Forest Policy and Economics, Elsevier, vol. 9(1), pages 63-76, November.
    18. Stern, David I., 2014. "The Environmental Kuznets Curve: A Primer," Working Papers 249424, Australian National University, Centre for Climate Economics & Policy.
    19. Salahodjaev, Raufhon, 2016. "Intelligence and deforestation: International data," Forest Policy and Economics, Elsevier, vol. 63(C), pages 20-27.
    20. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3672-:d:245593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.