IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2243-d155241.html
   My bibliography  Save this article

Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment

Author

Listed:
  • Ronald A. Halim

    (International Transport Forum/OECD, 2 rue André Pascal, 75775 Paris CEDEX 16, France)

  • Lucie Kirstein

    (International Transport Forum/OECD, 2 rue André Pascal, 75775 Paris CEDEX 16, France)

  • Olaf Merk

    (International Transport Forum/OECD, 2 rue André Pascal, 75775 Paris CEDEX 16, France)

  • Luis M. Martinez

    (International Transport Forum/OECD, 2 rue André Pascal, 75775 Paris CEDEX 16, France)

Abstract

International shipping has finally set a target to reduce its CO 2 emission by at least 50% by 2050. Despite this positive progress, this target is still not sufficient to reach Paris Agreement goals since CO 2 emissions from international shipping could reach 17% of global emissions by 2050 if no measures are taken. A key factor that hampers the achievement of Paris goals is the knowledge gap in terms of what level of decarbonization it is possible to achieve using all the available technologies. This paper examines the technical possibility of achieving the 1.5° goal of the Paris Agreement and the required supporting policy measures. We project the transport demand for 6 ship types (dry bulk, container, oil tanker, gas, wet product and chemical, and general cargo) based on the Organization for Economic Co-operation and Development’s (OECD’s) global trade projection of 25 commodities. Subsequently, we test the impact of mitigation measures on CO 2 emissions until 2035 using an international freight transport and emission model. We present four possible decarbonization pathways which combine all the technologies available today. We found that an 82–95% reduction in CO 2 emissions could be possible by 2035. Finally, we examine the barriers and the relevant policy measures to advance the decarbonization of international maritime transport.

Suggested Citation

  • Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2243-:d:155241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2011. "Reductions in greenhouse gas emissions and cost by shipping at lower speeds," Energy Policy, Elsevier, vol. 39(6), pages 3456-3464, June.
    2. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2012. "The importance of economies of scale for reductions in greenhouse gas emissions from shipping," Energy Policy, Elsevier, vol. 46(C), pages 386-398.
    3. Mihalis M Golias & Georgios K Saharidis & Maria Boile & Sotirios Theofanis & Marianthi G Ierapetritou, 2009. "The berth allocation problem: Optimizing vessel arrival time," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 358-377, December.
    4. Tavasszy, Lóránt & Minderhoud, Michiel & Perrin, Jean-François & Notteboom, Theo, 2011. "A strategic network choice model for global container flows: specification, estimation and application," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1163-1172.
    5. Jean Château & Rob Dellink & Elisa Lanzi, 2014. "An Overview of the OECD ENV-Linkages Model: Version 3," OECD Environment Working Papers 65, OECD Publishing.
    6. Olaf Merk, 2014. "Shipping Emissions in Ports," International Transport Forum Discussion Papers 2014/20, OECD Publishing.
    7. Itf, 2018. "Decarbonising Maritime Transport: Pathways to zero-carbon shipping by 2035," International Transport Forum Policy Papers 47, OECD Publishing.
    8. Traut, Michael & Gilbert, Paul & Walsh, Conor & Bows, Alice & Filippone, Antonio & Stansby, Peter & Wood, Ruth, 2014. "Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes," Applied Energy, Elsevier, vol. 113(C), pages 362-372.
    9. Itf, 2015. "The Impact of Mega-Ships," International Transport Forum Policy Papers 10, OECD Publishing.
    10. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuliano Rolle, 2022. "Between and within vehicle models hedonic analyses of environmental attributes: the case of the Italian used-car market," SEEDS Working Papers 0822, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2022.
    2. Vinicius Andrade dos Santos & Patrícia Pereira da Silva & Luís Manuel Ventura Serrano, 2022. "The Maritime Sector and Its Problematic Decarbonization: A Systematic Review of the Contribution of Alternative Fuels," Energies, MDPI, vol. 15(10), pages 1-30, May.
    3. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    4. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Zhaojun Wang & Duy Nong & Amanda M. Countryman & James J. Corbett & Travis Warziniack, 2020. "Potential impacts of ballast water regulations on international trade, shipping patterns, and the global economy: An integrated transportation and economic modeling assessment," Papers 2008.11334, arXiv.org.
    6. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa, 2023. "Effects of the SARS-CoV-2 Pandemic on CO 2 Emissions in the Port Areas of the Strait of Messina," Sustainability, MDPI, vol. 15(12), pages 1-30, June.
    7. Minghan Sun & Yiwei Jia & Jian Wei & Jewel X. Zhu, 2023. "Exploring the Green-Oriented Transition Process of Ship Power Systems: A Patent-Based Overview on Innovation Trends and Patterns," Energies, MDPI, vol. 16(6), pages 1-18, March.
    8. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    9. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Mariarosaria Lombardi & Giuseppe Maffia & Caterina Tricase, 2019. "Sustainable Bulk-Packaging System for Sugar Shipping: Case Study of the Enterprise Leader in Europe," Administrative Sciences, MDPI, vol. 9(4), pages 1-16, November.
    11. Jarosław Brodny & Magdalena Tutak, 2020. "The Use of Artificial Neural Networks to Analyze Greenhouse Gas and Air Pollutant Emissions from the Mining and Quarrying Sector in the European Union," Energies, MDPI, vol. 13(8), pages 1-31, April.
    12. Dražen Žgaljić & Edvard Tijan & Alen Jugović & Tanja Poletan Jugović, 2019. "Implementation of Sustainable Motorways of the Sea Services Multi-Criteria Analysis of a Croatian Port System," Sustainability, MDPI, vol. 11(23), pages 1-21, December.
    13. Patrizia Serra & Gianfranco Fancello, 2020. "Towards the IMO’s GHG Goals: A Critical Overview of the Perspectives and Challenges of the Main Options for Decarbonizing International Shipping," Sustainability, MDPI, vol. 12(8), pages 1-32, April.
    14. Suneet Singh & Ashish Dwivedi & Saurabh Pratap, 2023. "Sustainable Maritime Freight Transportation: Current Status and Future Directions," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    15. Michalis P. Michaelides & Herodotos Herodotou & Mikael Lind & Richard T. Watson, 2019. "Port-2-Port Communication Enhancing Short Sea Shipping Performance: The Case Study of Cyprus and the Eastern Mediterranean," Sustainability, MDPI, vol. 11(7), pages 1-22, March.
    16. Monica Grosso & Fabio Luis Marques dos Santos & Konstantinos Gkoumas & Marcin Stępniak & Ferenc Pekár, 2021. "The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    17. Julia Hansson & Selma Brynolf & Erik Fridell & Mariliis Lehtveer, 2020. "The Potential Role of Ammonia as Marine Fuel—Based on Energy Systems Modeling and Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    18. Hualong Yang & Xuefei Ma, 2019. "Uncovering CO 2 Emissions Patterns from China-Oriented International Maritime Transport: Decomposition and Decoupling Analysis," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    19. Edvard Tijan & Adrijana Agatić & Marija Jović & Saša Aksentijević, 2019. "Maritime National Single Window—A Prerequisite for Sustainable Seaport Business," Sustainability, MDPI, vol. 11(17), pages 1-21, August.
    20. Olympia Nisiforou & Louisa Marie Shakou & Afroditi Magou & Alexandros G. Charalambides, 2022. "A Roadmap towards the Decarbonization of Shipping: A Participatory Approach in Cyprus," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    21. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.
    22. Shinya Hanaoka & Takuma Matsuda & Wataru Saito & Tomoya Kawasaki & Takashi Hiraide, 2021. "Identifying Factors for Selecting Land over Maritime in Inter-Regional Cross-Border Transport," Sustainability, MDPI, vol. 13(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Lindstad, Haakon & Bright, Ryan M. & Strømman, Anders H., 2016. "Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation," Transport Policy, Elsevier, vol. 45(C), pages 24-30.
    3. Lee, Tsung-Chen & Chang, Young-Tae & Lee, Paul T.W., 2013. "Economy-wide impact analysis of a carbon tax on international container shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 87-102.
    4. Wong, Eugene Y.C. & Tai, Allen H. & Lau, Henry Y.K. & Raman, Mardjuki, 2015. "An utility-based decision support sustainability model in slow steaming maritime operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 57-69.
    5. Ančić, Ivica & Šestan, Ante, 2015. "Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers," Energy Policy, Elsevier, vol. 84(C), pages 107-116.
    6. Milan Janić, 2018. "Multidimensional examination of the performances of a liner shipping network: trunk line/route operated by conventional (Panamax Max) and mega (ULC - ultra large container) ships," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-35, December.
    7. Christian Finnsgård & Joakim Kalantari & Zeeshan Raza & Violeta Roso & Johan Woxenius, 2018. "Swedish shippers’ strategies for coping with slow-steaming in deep sea container shipping," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-24, December.
    8. Lindstad, Haakon & Jullumstrø, Egil & Sandaas, Inge, 2013. "Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion," Energy Policy, Elsevier, vol. 59(C), pages 341-349.
    9. Haakon Lindstad & Bjørn Egil Asbjørnslett & Anders H. Strømman, 2016. "Opportunities for increased profit and reduced cost and emissions by service differentiation within container liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(3), pages 280-294, April.
    10. Dinwoodie, John & Tuck, Sarah & Rigot-Müller, Patrick, 2013. "Maritime oil freight flows to 2050: Delphi perceptions of maritime specialists," Energy Policy, Elsevier, vol. 63(C), pages 553-561.
    11. Pierre, Cariou & Francesco, Parola & Theo, Notteboom, 2019. "Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping," International Journal of Production Economics, Elsevier, vol. 208(C), pages 17-28.
    12. Xu Zhao & Qianjun Lin & Hao Yu, 2019. "An Improved Mathematical Model for Green Lock Scheduling Problem of the Three Gorges Dam," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    13. Yuzhe Zhao & Yujun Fan & Jingmiao Zhou & Haibo Kuang, 2019. "Bi-Objective Optimization of Vessel Speed and Route for Sustainable Coastal Shipping under the Regulations of Emission Control Areas," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    14. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Elizabeth Lindstad & Henning Borgen & Gunnar S. Eskeland & Christopher Paalson & Harilaos Psaraftis & Osman Turan, 2019. "The Need to Amend IMO’s EEDI to Include a Threshold for Performance in Waves (Realistic Sea Conditions) to Achieve the Desired GHG Reductions," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    16. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
    17. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    19. Stojčić, Nebojša, 2021. "Social and private outcomes of green innovation incentives in European advancing economies," Technovation, Elsevier, vol. 104(C).
    20. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2243-:d:155241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.