IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v45y2016icp24-30.html
   My bibliography  Save this article

Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation

Author

Listed:
  • Lindstad, Haakon
  • Bright, Ryan M.
  • Strømman, Anders H.

Abstract

This paper assesses costs, emissions, and climate impact by freight shipping in the Arctic with main focus on the Northern Sea Route. The entire route lies in Arctic waters, which due to global warming, has become ice free during summer and autumn. The route goes from the Atlantic Ocean to the Pacific Ocean along the Russian Arctic coast and reduces voyage distance by 40% between Northern Europe and Japan. Traditionally, comparisons of the climate impact of transport solutions have been based on fuel consumption and carbon dioxide (CO2), while other trace emissions in the exhaust gas have been ignored. It is becoming increasingly well-known however, that aerosols, and their precursors emitted from shipping are strong climate forcers, with a magnitude that is intimately connected to the specific region of emission. Taking into account these considerations, we apply region-specific Global Warming Potential (GWP) characterization factors to estimate the relative magnitude of the short-lived climate forcers in the Arctic compared to traditional shipping regions and to the impact of CO2 emissions in light of reduced overall fuel consumption. The results indicate that there are no general climate benefits of utilizing the Northern Sea Route, even with cleaner fuels, since the additional impact of emissions in the Arctic more than offsets the effect of shorter voyages. In terms of climate change mitigation, managing this trade-off will be challenging, as the Northern Sea Route offers cost savings per ton of freight transported.

Suggested Citation

  • Lindstad, Haakon & Bright, Ryan M. & Strømman, Anders H., 2016. "Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation," Transport Policy, Elsevier, vol. 45(C), pages 24-30.
  • Handle: RePEc:eee:trapol:v:45:y:2016:i:c:p:24-30
    DOI: 10.1016/j.tranpol.2015.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X15300470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2015.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2011. "Reductions in greenhouse gas emissions and cost by shipping at lower speeds," Energy Policy, Elsevier, vol. 39(6), pages 3456-3464, June.
    2. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2012. "The importance of economies of scale for reductions in greenhouse gas emissions from shipping," Energy Policy, Elsevier, vol. 46(C), pages 386-398.
    3. Charles S. Zender, 2012. "Snowfall brightens Antarctic future," Nature Climate Change, Nature, vol. 2(11), pages 770-771, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph, Lambert & Giles, Thomas & Nishatabbas, Rehmatulla & Tristan, Smith, 2021. "A techno-economic environmental cost model for Arctic shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 28-51.
    2. Lindstad, Haakon Elizabeth & Eskeland, Gunnar S. & Rialland, Agathe, 2016. "Batteries in Offshore Support vessels - Pollution, climate impact and economics," Discussion Papers 2016/21, Norwegian School of Economics, Department of Business and Management Science.
    3. Koçak, Saim Turgut & Yercan, Funda, 2021. "Comparative cost-effectiveness analysis of Arctic and international shipping routes: A Fuzzy Analytic Hierarchy Process," Transport Policy, Elsevier, vol. 114(C), pages 147-164.
    4. Theocharis, Dimitrios & Pettit, Stephen & Rodrigues, Vasco Sanchez & Haider, Jane, 2018. "Arctic shipping: A systematic literature review of comparative studies," Journal of Transport Geography, Elsevier, vol. 69(C), pages 112-128.
    5. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Patrick Chaumette, 2017. "Economic challenge and new maritime risks management: What blue growth? [Challenge économique et maîtrise des nouveaux risques maritimes : Quelle croissance bleue]," Post-Print hal-01793050, HAL.
    7. Pierre Cariou & Ali Cheaitou & Olivier Faury & Sadeque Hamdan, 2021. "The feasibility of Arctic container shipping: the economic and environmental impacts of ice thickness," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(4), pages 615-631, December.
    8. Dai, Lei & Jing, Danyue & Hu, Hao & Wang, Zhaojing, 2021. "An environmental and techno-economic analysis of transporting LNG via Arctic route," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 56-71.
    9. Kong, Qingxu & Jiang, Changmin & Ng, Adolf K.Y., 2021. "The economic impacts of restricting black carbon emissions on cargo shipping in the Polar Code Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 159-176.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ančić, Ivica & Šestan, Ante, 2015. "Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers," Energy Policy, Elsevier, vol. 84(C), pages 107-116.
    2. Lindstad, Haakon Elizabeth & Eskeland, Gunnar S. & Rialland, Agathe, 2016. "Batteries in Offshore Support vessels - Pollution, climate impact and economics," Discussion Papers 2016/21, Norwegian School of Economics, Department of Business and Management Science.
    3. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    4. Lindstad, Haakon & Jullumstrø, Egil & Sandaas, Inge, 2013. "Reductions in cost and greenhouse gas emissions with new bulk ship designs enabled by the Panama Canal expansion," Energy Policy, Elsevier, vol. 59(C), pages 341-349.
    5. Pierre, Cariou & Francesco, Parola & Theo, Notteboom, 2019. "Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping," International Journal of Production Economics, Elsevier, vol. 208(C), pages 17-28.
    6. Yuzhe Zhao & Yujun Fan & Jingmiao Zhou & Haibo Kuang, 2019. "Bi-Objective Optimization of Vessel Speed and Route for Sustainable Coastal Shipping under the Regulations of Emission Control Areas," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    7. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Lee, Tsung-Chen & Chang, Young-Tae & Lee, Paul T.W., 2013. "Economy-wide impact analysis of a carbon tax on international container shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 87-102.
    9. Wong, Eugene Y.C. & Tai, Allen H. & Lau, Henry Y.K. & Raman, Mardjuki, 2015. "An utility-based decision support sustainability model in slow steaming maritime operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 78(C), pages 57-69.
    10. Haakon Lindstad & Bjørn Egil Asbjørnslett & Anders H. Strømman, 2016. "Opportunities for increased profit and reduced cost and emissions by service differentiation within container liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(3), pages 280-294, April.
    11. Dinwoodie, John & Tuck, Sarah & Rigot-Müller, Patrick, 2013. "Maritime oil freight flows to 2050: Delphi perceptions of maritime specialists," Energy Policy, Elsevier, vol. 63(C), pages 553-561.
    12. Xu Zhao & Qianjun Lin & Hao Yu, 2019. "An Improved Mathematical Model for Green Lock Scheduling Problem of the Three Gorges Dam," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    13. Traut, Michael & Gilbert, Paul & Walsh, Conor & Bows, Alice & Filippone, Antonio & Stansby, Peter & Wood, Ruth, 2014. "Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes," Applied Energy, Elsevier, vol. 113(C), pages 362-372.
    14. Haruna Chiroma & Sameem Abdul-kareem & Abdullah Khan & Nazri Mohd Nawi & Abdulsalam Ya’u Gital & Liyana Shuib & Adamu I Abubakar & Muhammad Zubair Rahman & Tutut Herawan, 2015. "Global Warming: Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption Using Neural Network and Hybrid Cuckoo Search Algorithm," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.
    15. Barone, Giovanni & Buonomano, Annamaria & Del Papa, Gianluca & Maka, Robert & Palombo, Adolfo, 2023. "How to achieve energy efficiency and sustainability of large ships: a new tool to optimize the operation of on-board diesel generators," Energy, Elsevier, vol. 282(C).
    16. Mhd Ruslan, Siti Marsila & Mokhtar, Kasypi, 2020. "An Analysis of Price Disparity: Peninsular Malaysia and Sabah," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 54(2), pages 53-66.
    17. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    18. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).
    19. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
    20. Kong, Qingxu & Jiang, Changmin & Ng, Adolf K.Y., 2021. "The economic impacts of restricting black carbon emissions on cargo shipping in the Polar Code Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 159-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:45:y:2016:i:c:p:24-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.