IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2056-d152998.html
   My bibliography  Save this article

Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area

Author

Listed:
  • Ruci Wang

    (Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan)

  • Ahmed Derdouri

    (Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan)

  • Yuji Murayama

    (Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan)

Abstract

Simulating future land use/cover changes is of great importance for urban planners and decision-makers, especially in metropolitan areas, to maintain a sustainable environment. This study examines the changes in land use/cover in the Tokyo metropolitan area (TMA) from 2007 to 2017 as a first step in using supervised classification. Second, based on the map results, we predicted the expected patterns of change in 2027 and 2037 by employing a hybrid model composed of cellular automata and the Markov model. The next step was to decide the model inputs consisting of the modeling variables affecting the distribution of land use/cover in the study area, for instance distance to central business district (CBD) and distance to railways, in addition to the classified maps of 2007 and 2017. Finally, we considered three scenarios for simulating land use/cover changes: spontaneous, sub-region development, and green space improvement. Simulation results show varied patterns of change according to the different scenarios. The sub-region development scenario is the most promising because it balances between urban areas, resources, and green spaces. This study provides significant insight for planners about change trends in the TMA and future challenges that might be encountered to maintain a sustainable region.

Suggested Citation

  • Ruci Wang & Ahmed Derdouri & Yuji Murayama, 2018. "Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2056-:d:152998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2056/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gert-Jan Hospers, 2014. "Policy Responses to Urban Shrinkage: From Growth Thinking to Civic Engagement," European Planning Studies, Taylor & Francis Journals, vol. 22(7), pages 1507-1523, July.
    2. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    3. Ashina, Shuichi & Nakata, Toshihiko, 2008. "Energy-efficiency strategy for CO2 emissions in a residential sector in Japan," Applied Energy, Elsevier, vol. 85(2-3), pages 101-114, February.
    4. Bhagawat Rimal & Lifu Zhang & Hamidreza Keshtkar & Xuejian Sun & Sushila Rijal, 2018. "Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal," Land, MDPI, vol. 7(1), pages 1-22, March.
    5. Faruqee, Hamid & Muhleisen, Martin, 2003. "Population aging in Japan: demographic shock and fiscal sustainability," Japan and the World Economy, Elsevier, vol. 15(2), pages 185-210, April.
    6. Cohen, Barney, 2004. "Urban Growth in Developing Countries: A Review of Current Trends and a Caution Regarding Existing Forecasts," World Development, Elsevier, vol. 32(1), pages 23-51, January.
    7. Yu Zhang & Pengcheng Wang & Tianwei Wang & Chongfa Cai & Zhaoxia Li & Mingjun Teng, 2018. "Scenarios Simulation of Spatio-Temporal Land Use Changes for Exploring Sustainable Management Strategies," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    8. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    9. Ge Shi & Nan Jiang & Lianqiu Yao, 2018. "Land Use and Cover Change during the Rapid Economic Growth Period from 1990 to 2010: A Case Study of Shanghai," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    10. Duong Dang Khoi & Yuji Murayama, 2010. "Delineation of Suitable Cropland Areas Using a GIS Based Multi-Criteria Evaluation Approach in the Tam Dao National Park Region, Vietnam," Sustainability, MDPI, vol. 2(7), pages 1-20, July.
    11. Zimu Jia & Bingran Ma & Jing Zhang & Weihua Zeng, 2018. "Simulating Spatial-Temporal Changes of Land-Use Based on Ecological Redline Restrictions and Landscape Driving Factors: A Case Study in Beijing," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    12. Iwata, Kazuyuki & Managi, Shunsuke, 2015. "Can Land Use Regulations and Taxes Help Mitigate Vehicular CO2 emissions?: An Empirical Study of Japanese Cities," MPRA Paper 66435, University Library of Munich, Germany.
    13. Andre Sorensen, 1999. "Land Readjustment, Urban Planning and Urban Sprawl in the Tokyo Metropolitan Area," Urban Studies, Urban Studies Journal Limited, vol. 36(13), pages 2333-2360, December.
    14. Chi, Guangqing & Ho, Hung Chak, 2018. "Population stress: A spatiotemporal analysis of population change and land development at the county level in the contiguous United States, 2001–2011," Land Use Policy, Elsevier, vol. 70(C), pages 128-137.
    15. Yang, Xin & Zheng, Xin-Qi & Chen, Rui, 2014. "A land use change model: Integrating landscape pattern indexes and Markov-CA," Ecological Modelling, Elsevier, vol. 283(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huanhuan Li & Wei Song, 2019. "Expansion of Rural Settlements on High-Quality Arable Land in Tongzhou District in Beijing, China," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    2. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    4. Zaheer Abbas & Guang Yang & Yuanjun Zhong & Yaolong Zhao, 2021. "Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China," Land, MDPI, vol. 10(6), pages 1-26, June.
    5. Ruth Mevianna Aurora & Katsunori Furuya, 2023. "Spatiotemporal Analysis of Urban Sprawl and Ecological Quality Study Case: Chiba Prefecture, Japan," Land, MDPI, vol. 12(11), pages 1-21, November.
    6. Yongjiu Feng & Jiafeng Wang & Xiaohua Tong & Yang Liu & Zhenkun Lei & Chen Gao & Shurui Chen, 2018. "The Effect of Observation Scale on Urban Growth Simulation Using Particle Swarm Optimization-Based CA Models," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    7. Yuta Kanno & Takayuki Shiohama, 2022. "Land price polarization and dispersion in Tokyo: a spatial model approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(2), pages 807-835, June.
    8. Ruci Wang & Hao Hou & Yuji Murayama, 2018. "Scenario-Based Simulation of Tianjin City Using a Cellular Automata–Markov Model," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    9. Honglei Jiang & Xia Xu & Mengxi Guan & Lingfei Wang & Yongmei Huang & Yinghui Liu, 2019. "Simulation of Spatiotemporal Land Use Changes for Integrated Model of Socioeconomic and Ecological Processes in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    10. Xia Xu & Mengxi Guan & Honglei Jiang & Lingfei Wang, 2019. "Dynamic Simulation of Land Use Change of the Upper and Middle Streams of the Luan River, Northern China," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    11. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    12. Sai Hu & Longqian Chen & Long Li & Ting Zhang & Lina Yuan & Liang Cheng & Jia Wang & Mingxin Wen, 2020. "Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China," IJERPH, MDPI, vol. 17(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingen Hu & Ye Zhang & Xinli Ke, 2018. "Dynamics of Tradeoffs between Economic Benefits and Ecosystem Services due to Urban Expansion," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    2. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    3. Vik, Jostein, 2020. "The agricultural policy trilemma: On the wicked nature of agricultural policy making," Land Use Policy, Elsevier, vol. 99(C).
    4. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    5. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    6. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    7. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    8. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2012. "Der Markt für Bioenergie 2012," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(Supplemen), pages 1-20, February.
    9. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.
    10. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    11. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    12. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    13. Bose, Arnab & Ramji, Aditya & Singh, Jarnail & Dholakia, Dhairya, 2012. "A case study for sustainable development action using financial gradients," Energy Policy, Elsevier, vol. 47(S1), pages 79-86.
    14. Xiao Lyu & Yanan Wang & Yuntai Zhao & Shandong Niu, 2022. "Spatio‐temporal pattern and mechanism of coordinated development of “population–land–industry–money” in rural areas of three provinces in Northeast China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1333-1361, September.
    15. Till Hermanns & Katharina Helming & Katharina Schmidt & Hannes Jochen König & Heiko Faust, 2015. "Stakeholder Strategies for Sustainability Impact Assessment of Land Use Scenarios: Analytical Framework and Identifying Land Use Claims," Land, MDPI, vol. 4(3), pages 1-29, September.
    16. Lisa Biber-Freudenberger & Amit Kumar Basukala & Martin Bruckner & Jan Börner, 2018. "Sustainability Performance of National Bio-Economies," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    17. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    18. Carlo Carraro & Marinella Davide & Valeria Barbi & Giacomo Marangoni, 2013. "Science adva ncements, policy immobility: the two fac es of climate (in)action," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 5-29.
    19. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.
    20. Hermanns, Till & Helming, Katharina & König, Hannes J. & Schmidt, Katharina & Li, Qirui & Faust, Heiko, 2017. "Sustainability impact assessment of peatland-use scenarios: Confronting land use supply with demand," Ecosystem Services, Elsevier, vol. 26(PB), pages 365-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2056-:d:152998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.