IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p2080-d448978.html
   My bibliography  Save this article

Risk Analysis through the Half-Normal Distribution

Author

Listed:
  • Maria-Teresa Bosch-Badia

    (Deparment of Busines, Campus de Montilivi, Universitat de Girona, 17071 Girona, Spain)

  • Joan Montllor-Serrats

    (Department of Business, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Spain)

  • Maria-Antonia Tarrazon-Rodon

    (Department of Business, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Spain)

Abstract

We study the applicability of the half-normal distribution to the probability–severity risk analysis traditionally performed through risk matrices and continuous probability–consequence diagrams (CPCDs). To this end, we develop a model that adapts the financial risk measures Value-at-Risk (VaR) and Conditional Value at Risk (CVaR) to risky scenarios that face only negative impacts. This model leads to three risk indicators: The Hazards Index-at-Risk (HIaR), the Expected Hazards Damage (EHD), and the Conditional HIaR (CHIaR). HIaR measures the expected highest hazards impact under a certain probability, while EHD consists of the expected impact that stems from truncating the half-normal distribution at the HIaR point. CHIaR, in turn, measures the expected damage in the case it exceeds the HIaR. Therefore, the Truncated Risk Model that we develop generates a measure for hazards expectations (EHD) and another measure for hazards surprises (CHIaR). Our analysis includes deduction of the mathematical functions that relate HIaR, EHD, and CHIaR to one another as well as the expected loss estimated by risk matrices. By extending the model to the generalised half-normal distribution, we incorporate a shape parameter into the model that can be interpreted as a hazard aversion coefficient.

Suggested Citation

  • Maria-Teresa Bosch-Badia & Joan Montllor-Serrats & Maria-Antonia Tarrazon-Rodon, 2020. "Risk Analysis through the Half-Normal Distribution," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2080-:d:448978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/2080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/2080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steffen Andersen & John Fountain & Glenn Harrison & E. Rutström, 2014. "Estimating subjective probabilities," Journal of Risk and Uncertainty, Springer, vol. 48(3), pages 207-229, June.
    2. Aharony, Joseph & Jones, Charles P & Swary, Itzhak, 1980. "An Analysis of Risk and Return Characteristics of Corporate Bankruptcy Using Capital Market Data," Journal of Finance, American Finance Association, vol. 35(4), pages 1001-1016, September.
    3. Collins, Robert A. & Gbur, Edward E., 1991. "Risk Analysis For Proprietors With Limited Liability: A Mean- Variance, Safety- First Synthesis," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 16(1), pages 1-7, July.
    4. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Abrahamsen, HÃ¥kon Bjorheim, 2020. "A New Framework To Idenitfy And Assess Hidden Assumptions In The Background Knowledge Of A Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    5. Aven, Terje, 2017. "Improving risk characterisations in practical situations by highlighting knowledge aspects, with applications to risk matrices," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 42-48.
    6. Bakhodir Ergashev & Konstantin Pavlikov & Stan Uryasev & Evangelos Sekeris, 2016. "Estimation of Truncated Data Samples in Operational Risk Modeling," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 613-640, September.
    7. Cathy W.S. Chen & Richard Gerlach & Edward M. H. Lin & W. C. W. Lee, 2012. "Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 661-687, December.
    8. Michail Tsagris & Christina Beneki & Hossein Hassani, 2014. "On the Folded Normal Distribution," Mathematics, MDPI, vol. 2(1), pages 1-17, February.
    9. Chen, Carl R. & Su, Yuli & Huang, Ying, 2008. "Hourly index return autocorrelation and conditional volatility in an EAR-GJR-GARCH model with generalized error distribution," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 789-798, September.
    10. Stoyanov, Stoyan V. & Rachev, Svetlozar T. & Fabozzi, Frank J., 2013. "CVaR sensitivity with respect to tail thickness," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 977-988.
    11. E.S. Levine, 2012. "Improving risk matrices: the advantages of logarithmically scaled axes," Journal of Risk Research, Taylor & Francis Journals, vol. 15(2), pages 209-222, February.
    12. repec:syb:wpbsba:03/2011 is not listed on IDEAS
    13. Flage, Roger & Aven, Terje & Berner, Christine L., 2018. "A comparison between a probability bounds analysis and a subjective probability approach to express epistemic uncertainties in a risk assessment context – A simple illustrative example," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 1-10.
    14. Pescim, Rodrigo R. & Demétrio, Clarice G.B. & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Urbano, Mariana R., 2010. "The beta generalized half-normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 945-957, April.
    15. Frans de Roon & Paul Karehnke, 2017. "A Simple Skewed Distribution with Asset Pricing Applications," Review of Finance, European Finance Association, vol. 21(6), pages 2169-2197.
    16. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denning, Karen C. & Hulburt, Heather & Ferris, Stephen P., 2006. "Risk and wealth effects of U.S. firm joint venture activity," Review of Financial Economics, Elsevier, vol. 15(3), pages 271-285.
    2. Karen C. Denning & Heather Hulburt & Stephen P. Ferris, 2006. "Risk and wealth effects of U.S. firm joint venture activity," Review of Financial Economics, John Wiley & Sons, vol. 15(3), pages 271-285.
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.
    5. Dybvig, Philip H. & Gong, Ning & Schwartz, Rachel, 2000. "Bias of Damage Awards and Free Options in Securities Litigation," Journal of Financial Intermediation, Elsevier, vol. 9(2), pages 149-168, April.
    6. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    7. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    8. Delis, Manthos & Savva, Christos & Theodossiou, Panayiotis, 2020. "A Coronavirus Asset Pricing Model: The Role of Skewness," MPRA Paper 100877, University Library of Munich, Germany.
    9. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    10. Helga Meier & Nicos Christofides & Gerry Salkin, 2001. "Capital Budgeting Under Uncertainty---An Integrated Approach Using Contingent Claims Analysis and Integer Programming," Operations Research, INFORMS, vol. 49(2), pages 196-206, April.
    11. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    12. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    13. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    14. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    15. Juan M. Londono & Mehrdad Samadi, 2023. "The Price of Macroeconomic Uncertainty: Evidence from Daily Options," International Finance Discussion Papers 1376, Board of Governors of the Federal Reserve System (U.S.).
    16. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    17. Bernard Dumas & Andrew Lyasoff, 2012. "Incomplete-Market Equilibria Solved Recursively on an Event Tree," Journal of Finance, American Finance Association, vol. 67(5), pages 1897-1941, October.
    18. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    19. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    20. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2080-:d:448978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.