IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i5p518-d553571.html
   My bibliography  Save this article

How Does Local Real Estate Investment Influence Neighborhood PM 2.5 Concentrations? A Spatial Econometric Analysis

Author

Listed:
  • Hongjie Bao

    (School of Management, Northwest Minzu University, Lanzhou 730030, China)

  • Ling Shan

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Yufei Wang

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Yuehua Jiang

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Cheonjae Lee

    (TUM School of Engineering & Design, Technical University of Munich (TUM), 80333 Munich, Germany)

  • Xufeng Cui

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China
    Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC), Nanjing Normal University, Nanjing 210046, China)

Abstract

Real estate investment has been an important driving force in China’s economic growth in recent years, and the relationship between real estate investment and PM 2.5 concentrations has been attracting widespread attention. Based on spatial econometric modelling, this paper explores the relationships between real estate investment and PM 2.5 concentrations using multi-source panel data from 30 provinces in China between 1987 and 2017. The results demonstrate that compared with static spatial panel modelling, using a dynamic spatial Durbin lag model (DSDLM) more accurately reflects the influences of real estate investment on PM 2.5 concentrations in China, and that PM 2.5 concentrations show significant superposition effects and spillover effects. Moreover, there is an inverted U-shaped relationship between real estate investment and PM 2.5 concentrations in the Eastern and Central Regions of China. At the national level, the impacts of real estate investment on land urbanization and PM 2.5 concentrations first increased and then decreased over time. The key implications of this analysis are as follows. (1) it highlights the need for a unified PM 2.5 monitoring platform among Chinese regions; (2) the quality of population urbanization rather than land urbanization should be given more attention; and (3) the speed of construction of green cities and building of green transportation systems and green town systems should be increased.

Suggested Citation

  • Hongjie Bao & Ling Shan & Yufei Wang & Yuehua Jiang & Cheonjae Lee & Xufeng Cui, 2021. "How Does Local Real Estate Investment Influence Neighborhood PM 2.5 Concentrations? A Spatial Econometric Analysis," Land, MDPI, vol. 10(5), pages 1-21, May.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:518-:d:553571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/5/518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/5/518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Jing & Zhou, Chunshan & Wang, Shaojian & Li, Shijie, 2018. "Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally," Applied Energy, Elsevier, vol. 230(C), pages 94-105.
    2. Jingjing Shao & Jingfeng Ge & Xiaomiao Feng & Chaoran Zhao, 2020. "Study on the relationship between PM2.5 concentration and intensive land use in Hebei Province based on a spatial regression model," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    3. Chen, Y. & He, M. & Rudkin, S., 2017. "Understanding Chinese provincial real estate investment: A Global VAR perspective," Economic Modelling, Elsevier, vol. 67(C), pages 248-260.
    4. Samina Khalil & Zeeshan Inam, 2006. "Is Trade Good for Environment? A Unit Root Cointegration Analysis," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 45(4), pages 1187-1196.
    5. Yu Kong & John L. Glascock & Ran Lu-Andrews, 2016. "An Investigation into Real Estate Investment and Economic Growth in China: A Dynamic Panel Data Approach," Sustainability, MDPI, vol. 8(1), pages 1-18, January.
    6. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    7. Shuaishuai Han & Bindong Sun, 2019. "Impact of Population Density on PM 2.5 Concentrations: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    8. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    9. Tripura Sundari C. U. & Anindita Mitra, 2020. "Development and Degradation: The Nexus between GDP, FDI, and Pollution in India," Emerging Economy Studies, International Management Institute, vol. 6(1), pages 39-49, May.
    10. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    11. Shahzad, Syed Jawad Hussain & Kumar, Ronald Ravinesh & Zakaria, Muhammad & Hurr, Maryam, 2017. "Carbon emission, energy consumption, trade openness and financial development in Pakistan: A revisit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 185-192.
    12. Clayton, Jim & Devine, Avis & Holtermans, Rogier, 2021. "Beyond building certification: The impact of environmental interventions on commercial real estate operations," Energy Economics, Elsevier, vol. 93(C).
    13. Chen, Dengke & Chen, Shiyi, 2017. "Particulate air pollution and real estate valuation: Evidence from 286 Chinese prefecture-level cities over 2004–2013," Energy Policy, Elsevier, vol. 109(C), pages 884-897.
    14. Francesco Riccioli & Roberto Fratini & Fabio Boncinelli, 2021. "The Impacts in Real Estate of Landscape Values: Evidence from Tuscany (Italy)," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    15. Shen, Zhiyang & Baležentis, Tomas & Chen, Xueli & Valdmanis, Vivian, 2018. "Green growth and structural change in Chinese agricultural sector during 1997–2014," China Economic Review, Elsevier, vol. 51(C), pages 83-96.
    16. Zameer, Hashim & Yasmeen, Humaira & Zafar, Muhammad Wasif & Waheed, Abdul & Sinha, Avik, 2020. "Analyzing the association between Innovation, Economic Growth, and Environment: Divulging the Importance of FDI and Trade Openness in India," MPRA Paper 101323, University Library of Munich, Germany, revised 2020.
    17. Mingliang Zhao & Fangyi Liu & Yingjie Song & Jiangbo Geng, 2020. "Impact of Air Pollution Regulation and Technological Investment on Sustainable Development of Green Economy in Eastern China: Empirical Analysis with Panel Data Approach," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    18. Fuqin Zhang & Yue Wang & Wei Liu, 2020. "Science and Technology Resource Allocation, Spatial Association, and Regional Innovation," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    19. Ji, Xi & Yao, Yixin & Long, Xianling, 2018. "What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective," Energy Policy, Elsevier, vol. 119(C), pages 458-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqin Gong & Yu Kong, 2022. "Nonlinear Influence of Chinese Real Estate Development on Environmental Pollution: New Evidence from Spatial Econometric Model," IJERPH, MDPI, vol. 19(1), pages 1-22, January.
    2. Xueming Li & Songbo Li & Shenzhen Tian & Yingying Guan & He Liu, 2021. "Air Quality and the Spatial-Temporal Differentiation of Mechanisms Underlying Chinese Urban Human Settlements," Land, MDPI, vol. 10(11), pages 1-22, November.
    3. Linyan Wang & Haiqing Hu & Xianzhu Wang, 2022. "The Dynamic Evolution of the Structure of an Urban Housing Investment Niche Network and Its Underlying Mechanisms: A Case Study of 35 Large and Medium-Sized Cities in China," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    4. Xufeng Cui & Sisi Huang & Cuicui Liu & Tingting Zhou & Ling Shan & Fengyuan Zhang & Min Chen & Fei Li & Walter T. de Vries, 2021. "Applying SBM-GPA Model to Explore Urban Land Use Efficiency Considering Ecological Development in China," Land, MDPI, vol. 10(9), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    2. Wang, Xiaomin & Tian, Guanghui & Yang, Dongyang & Zhang, Wenxin & Lu, Debin & Liu, Zhongmei, 2018. "Responses of PM2.5 pollution to urbanization in China," Energy Policy, Elsevier, vol. 123(C), pages 602-610.
    3. Matheus Koengkan, 2018. "The decline of environmental degradation by renewable energy consumption in the MERCOSUR countries: an approach with ARDL modeling," Environment Systems and Decisions, Springer, vol. 38(3), pages 415-425, September.
    4. Yajie Liu & Feng Dong, 2020. "Corruption, Economic Development and Haze Pollution: Evidence from 139 Global Countries," Sustainability, MDPI, vol. 12(9), pages 1-22, April.
    5. Xue, Chaokai & Shahbaz, Muhammad & Ahmed, Zahoor & Ahmad, Mahmood & Sinha, Avik, 2022. "Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty?," Renewable Energy, Elsevier, vol. 184(C), pages 899-907.
    6. Yao, Wanxiang & Zheng, Zhimiao & Zhao, Jun & Wang, Xiao & Wang, Yan & Li, Xianli & Fu, Jidong, 2020. "The factor analysis of fog and haze under the coupling of multiple factors -- taking four Chinese cities as an example," Energy Policy, Elsevier, vol. 137(C).
    7. Yu Sang Chang & Byong-Jin You & Hann Earl Kim, 2020. "Dynamic Trends of Fine Particulate Matter Exposure across 190 Countries: Analysis and Key Insights," Sustainability, MDPI, vol. 12(7), pages 1-34, April.
    8. Sun, Yunpeng & Bao, Qun & Siao-Yun, Wei & Islam, Misbah ul & Razzaq, Asif, 2022. "Renewable energy transition and environmental sustainability through economic complexity in BRICS countries: Fresh insights from novel Method of Moments Quantile regression," Renewable Energy, Elsevier, vol. 184(C), pages 1165-1176.
    9. Neng Shen & Yifan Wang & Hui Peng & Zhiping Hou, 2020. "Renewable Energy Green Innovation, Fossil Energy Consumption, and Air Pollution—Spatial Empirical Analysis Based on China," Sustainability, MDPI, vol. 12(16), pages 1-23, August.
    10. Wenqin Gong & Yu Kong, 2022. "Nonlinear Influence of Chinese Real Estate Development on Environmental Pollution: New Evidence from Spatial Econometric Model," IJERPH, MDPI, vol. 19(1), pages 1-22, January.
    11. Ye Yang & Haifeng Lan & Jing Li, 2019. "Spatial Econometric Analysis of the Impact of Socioeconomic Factors on PM 2.5 Concentration in China’s Inland Cities: A Case Study from Chengdu Plain Economic Zone," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    12. Buhari Doğan & Oana M. Driha & Daniel Balsalobre Lorente & Umer Shahzad, 2021. "The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 1-12, January.
    13. Yajie Liu & Feng Dong, 2019. "How Industrial Transfer Processes Impact on Haze Pollution in China: An Analysis from the Perspective of Spatial Effects," IJERPH, MDPI, vol. 16(3), pages 1-27, February.
    14. Shichun Xu & Yongmei Miao & Yiwen Li & Yifeng Zhou & Xiaoxue Ma & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Factors Drive Air Pollutants in China? An Analysis from the Perspective of Regional Difference Using a Combined Method of Production Decomposition Analysis and Logarithmic Mean Divisia Index," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    15. Xin, Daleng & Ahmad, Manzoor & Lei, Hong & Khattak, Shoukat Iqbal, 2021. "Do innovation in environmental-related technologies asymmetrically affect carbon dioxide emissions in the United States?," Technology in Society, Elsevier, vol. 67(C).
    16. Wei, Jian & Zhou, Yuqi & Wang, Yuan & Miao, Zhuang & Guo, Yupeng & Zhang, Hao & Li, Xueting & Wang, Zhipeng & Shi, Zongmo, 2023. "A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing," Energy, Elsevier, vol. 265(C).
    17. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.
    18. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    19. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    20. Yuqing Zhou & Haibin Liu, 2023. "Temporal and Spatial Distribution of Ozone and Its Influencing Factors in China," Sustainability, MDPI, vol. 15(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:5:p:518-:d:553571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.