IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032844.html
   My bibliography  Save this article

A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing

Author

Listed:
  • Wei, Jian
  • Zhou, Yuqi
  • Wang, Yuan
  • Miao, Zhuang
  • Guo, Yupeng
  • Zhang, Hao
  • Li, Xueting
  • Wang, Zhipeng
  • Shi, Zongmo

Abstract

Roads carry a lot of green and renewable energy. Thermoelectric cement as a green material can convert thermal energy to electrical power by using the temperature difference between the road surface and the underground. Cement-based materials can meet the needs for large-scale application in pavements because of their wide source, low cost, and good mechanical properties. Due to the preparation of large-size thermoelectric cement materials, the thermoelectric performance will be reduced, but the existing thermoelectric cement materials with excellent thermoelectric performance are small in size and they cannot be used for large-area applications. It is still a problem that thermoelectric properties of large-size thermoelectric cement-based composites prepared by the traditional pouring method are prone to dry shrinkage crack. Herein, to solve the problem of poor thermoelectric properties of large-sized thermoelectric cement materials. A thermoelectric cement block prepared by dry pressing is reported to be assembled into a large thermoelectric module of cement-based composite more suitable for pavement energy harvesting. The thermoelectric cement block is 50mm × 50mm × 20 mm, and the size of assembled into a large thermoelectric module is 300mm × 300mm × 35 mm. The addition of expanded graphite and metal oxides raised the average conductivity of the cement blocks to 0.63 S/cm and the average Seebeck coefficient to 20.79 μV/K, respectively. Tests have found that using a series connection of thermoelectric conversion modules can yield higher energy. Compared to other pavement thermoelectric generator (TEG) energy harvesting systems, the thermoelectric modules are less expensive and allow for large areas to be laid on the pavement. The module assembled using thermoelectric cement-based composite materials can generate 0.5 kW h of energy for 24 h on a road with a length of 1 km and a width of 10 m. Meanwhile, the thermoelectric module of cement-based composite has the ability to reduce the surface temperature and mitigate the urban heat island effect. The test results showed that it can reduce the temperature by 1°C–3°C. The results of this study provide a reference for future large scale practical applications of thermoelectric cement-based composites.

Suggested Citation

  • Wei, Jian & Zhou, Yuqi & Wang, Yuan & Miao, Zhuang & Guo, Yupeng & Zhang, Hao & Li, Xueting & Wang, Zhipeng & Shi, Zongmo, 2023. "A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032844
    DOI: 10.1016/j.energy.2022.126398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaza, Nikhil, 2020. "Urban form and transportation energy consumption," Energy Policy, Elsevier, vol. 136(C).
    2. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    3. Kumar Sahu, Bikash, 2015. "A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 621-634.
    4. Dong Zhao & Thomas Lenz & Gerwin H. Gelinck & Pim Groen & Dragan Damjanovic & Dago M. Leeuw & Ilias Katsouras, 2019. "Depolarization of multidomain ferroelectric materials," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.
    2. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes, 2023. "A Methodological Approach of Predicting the Performance of Thermoelectric Generators with Temperature-Dependent Properties and Convection Heat Losses," Energies, MDPI, vol. 16(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.
    2. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    3. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    4. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    5. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    6. Udi Joshua & Festus V. Bekun & Samuel A. Sarkodie, 2020. "New Insight into the Causal Linkage between Economic Expansion, FDI, Coal consumption, Pollutant emissions and Urbanization in South Africa," Working Papers 20/011, European Xtramile Centre of African Studies (EXCAS).
    7. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    8. Yang, Yurong & Wang, Shixue & Zhu, Yu, 2020. "Evaluation method for assessing heat transfer enhancement effect on performance improvement of thermoelectric generator systems," Applied Energy, Elsevier, vol. 263(C).
    9. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    10. Mary O. Agboola & Festus V. Bekun, 2019. "Does Agricultural Value Added Induce Environmental Degradation? Empirical Evidence from an Agrarian Country," CEREDEC Working Papers 19/040, Centre de Recherche pour le Développement Economique (CEREDEC).
    11. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    12. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    13. Khribich, Abir & Kacem, Rami H. & Dakhlaoui, Ahlem, 2021. "Causality nexus of renewable energy consumption and social development: Evidence from high-income countries," Renewable Energy, Elsevier, vol. 169(C), pages 14-22.
    14. Aldieri, Luigi & Bruno, Bruna & Makkonen, Teemu & Vinci, Concetto Paolo, 2023. "Environmental innovations, geographically mediated knowledge spillovers, economic and environmental performance," Resources Policy, Elsevier, vol. 81(C).
    15. Xiaoye Jin & Meiying Li & Fansheng Meng, 2019. "Comprehensive Evaluation of the New Energy Power Generation Development at the Regional Level: An Empirical Analysis from China," Energies, MDPI, vol. 12(23), pages 1-15, December.
    16. Wang, Xiaomin & Tian, Guanghui & Yang, Dongyang & Zhang, Wenxin & Lu, Debin & Liu, Zhongmei, 2018. "Responses of PM2.5 pollution to urbanization in China," Energy Policy, Elsevier, vol. 123(C), pages 602-610.
    17. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    18. Liping Liao & Chukun Huang & Minzhe Du, 2022. "The Effect of Energy Quota Trading on Energy Saving in China: Insight from a Quasi-Natural Experiment," Energies, MDPI, vol. 15(22), pages 1-17, November.
    19. Danish, & Baloch, Muhammad Awais & Wang, Bo, 2019. "Analyzing the role of governance in CO2 emissions mitigation: The BRICS experience," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 119-125.
    20. Simplice A. Asongu & Joel Hinaunye Eita, 2023. "Promoting renewable energy consumption in Sub-Saharan Africa: how capital flight crowds-out the favorable effect of foreign aid," Working Papers of the African Governance and Development Institute. 23/048, African Governance and Development Institute..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.