IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3217-d1066045.html
   My bibliography  Save this article

Dual Carbon Goal-Based Quadrilateral Evolutionary Game: Study on the New Energy Vehicle Industry in China

Author

Listed:
  • Tao Li

    (School of Intellectual Property, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Xuanwu District, Nanjing 210094, China
    Centre for Innovation and Development, Nanjing University of Science and Technology, Nanjing 210094, China
    School of Business, Xianda College of Economics & Humanities Shanghai International Studies University, No. 390 Dong Tiyuhui Rd, Hongkou District, Shanghai 200083, China)

  • Lei Ma

    (School of Intellectual Property, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Xuanwu District, Nanjing 210094, China
    Centre for Innovation and Development, Nanjing University of Science and Technology, Nanjing 210094, China
    School of Public Affairs, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Zheng Liu

    (Centre for Innovation and Development, Nanjing University of Science and Technology, Nanjing 210094, China
    Cardiff School of Management, Cardiff Metropolitan University, Western Ave, Cardiff CF5 2YB, UK)

  • Chaonan Yi

    (School of Intellectual Property, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Xuanwu District, Nanjing 210094, China
    Centre for Innovation and Development, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Kaitong Liang

    (School of Intellectual Property, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Xuanwu District, Nanjing 210094, China
    Centre for Innovation and Development, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract

In an effort to tackle climate change, the “Dual Carbon” target raised by the Chinese government aims to reach peak carbon dioxide emissions by 2030 and to achieve carbon neutrality by 2060. Accordingly, policy incentives have accelerated the new energy vehicle (NEV) sector. Whilst previous studies have focused on the bilateral game between governments and manufacturers, NEV development has witnessed interaction among multiple players. In this paper, we construct a quadrilateral evolutionary game model, considering the impact of government policies, manufacturers’ R&D investments, dealers’ support, and consumer choice on the evolutionary stabilization strategy (ESS) in the context of China. The results show that: (1) in the absence of government incentives, there is no motivation for manufacturers, dealers and consumers to consider the development of NEVs; (2) government incentives affect manufacturers and consumers on the evolutionary paths in the short term. In the long term, benefit- and utility-based limited rationality has a dominant role in the ESS. This study contributes to the understanding of the multilateral dynamics of NEV innovation and provides important implications to practitioners and policy makers.

Suggested Citation

  • Tao Li & Lei Ma & Zheng Liu & Chaonan Yi & Kaitong Liang, 2023. "Dual Carbon Goal-Based Quadrilateral Evolutionary Game: Study on the New Energy Vehicle Industry in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3217-:d:1066045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Shen & Fei Lin & T. C. E. Cheng, 2022. "Low-Carbon Transition Models of High Carbon Supply Chains under the Mixed Carbon Cap-and-Trade and Carbon Tax Policy in the Carbon Neutrality Era," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    2. Xuhui Ding & Zhongyao Cai & Qianqian Xiao & Suhui Gao, 2019. "A Study on The Driving Factors and Spatial Spillover of Carbon Emission Intensity in The Yangtze River Economic Belt under Double Control Action," IJERPH, MDPI, vol. 16(22), pages 1-15, November.
    3. Wei Wei & Ling He & Xiaofan Li & Qi Cui & Hao Chen, 2022. "The Effectiveness and Trade-Offs of Renewable Energy Policies in Achieving the Dual Decarbonization Goals in China: A Dynamic Computable General Equilibrium Analysis," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    4. Wu Yang & Zhang Min & Mingxing Yang & Jun Yan, 2022. "Exploration of the Implementation of Carbon Neutralization in the Field of Natural Resources under the Background of Sustainable Development—An Overview," IJERPH, MDPI, vol. 19(21), pages 1-28, October.
    5. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
    6. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "Impact of government subsidy on the optimal R&D and advertising investment in the cooperative supply chain of new energy vehicles," Energy Policy, Elsevier, vol. 164(C).
    7. Edler, Jakob & Georghiou, Luke, 2007. "Public procurement and innovation--Resurrecting the demand side," Research Policy, Elsevier, vol. 36(7), pages 949-963, September.
    8. Ruguo Fan & Rongkai Chen, 2022. "Promotion Policies for Electric Vehicle Diffusion in China Considering Dynamic Consumer Preferences: A Network-Based Evolutionary Analysis," IJERPH, MDPI, vol. 19(9), pages 1-21, April.
    9. Rui Jiang & Peng Wu & Chengke Wu, 2022. "Driving Factors behind Energy-Related Carbon Emissions in the U.S. Road Transport Sector: A Decomposition Analysis," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    10. Jennifer E. Kay, 2020. "Early climate models successfully predicted global warming," Nature, Nature, vol. 578(7793), pages 45-46, February.
    11. Lingyun Zhu & Ming Chen, 2020. "Research on Spent LiFePO 4 Electric Vehicle Battery Disposal and Its Life Cycle Inventory Collection in China," IJERPH, MDPI, vol. 17(23), pages 1-17, November.
    12. Dmitry V. Boguslavsky & Konstantin S. Sharov & Natalia P. Sharova, 2022. "Using Alternative Sources of Energy for Decarbonization: A Piece of Cake, but How to Cook This Cake?," IJERPH, MDPI, vol. 19(23), pages 1-30, December.
    13. Ma, Junhai & Hou, Yaming & Yang, Wenhui & Tian, Yi, 2020. "A time-based pricing game in a competitive vehicle market regarding the intervention of carbon emission reduction," Energy Policy, Elsevier, vol. 142(C).
    14. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    15. Chenen Ma & Lina Madaniyazi & Yang Xie, 2021. "Impact of the Electric Vehicle Policies on Environment and Health in the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 18(2), pages 1-14, January.
    16. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    17. Gerardo Zarazua de Rubens & Lance Noel & Benjamin K. Sovacool, 2018. "Dismissive and deceptive car dealerships create barriers to electric vehicle adoption at the point of sale," Nature Energy, Nature, vol. 3(6), pages 501-507, June.
    18. Meng Guo & Shukai Cai, 2022. "Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    19. Zhixiong Weng & Cuiyun Cheng & Yang Xie & Hao Ma, 2022. "Reduction Effect of Carbon Emission Trading Policy in Decreasing PM 2.5 Concentrations in China," IJERPH, MDPI, vol. 19(23), pages 1-12, December.
    20. Fang, Lei & Zhao, Sai, 2023. "On the green subsidies in a differentiated market," International Journal of Production Economics, Elsevier, vol. 257(C).
    21. Wenzhu Liao & Lin Liu & Jiazhuo Fu, 2019. "A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading," IJERPH, MDPI, vol. 16(17), pages 1-25, August.
    22. Zhu, Lijing & Wang, Jingzhou & Farnoosh, Arash & Pan, Xunzhang, 2022. "A game-theory analysis of electric vehicle adoption in Beijing under license plate control policy," Energy, Elsevier, vol. 244(PA).
    23. Zhao, Chuan & Ma, Xuying & Wang, Kun, 2022. "The electric vehicle promotion in the cold-chain logistics under two-sided support policy: An evolutionary game perspective," Transport Policy, Elsevier, vol. 121(C), pages 14-34.
    24. Min-Chih Hsieh & Hung-Jen Chen & Ming-Le Tong & Cheng-Wu Yan, 2021. "Effect of Environmental Noise, Distance and Warning Sound on Pedestrians’ Auditory Detectability of Electric Vehicles," IJERPH, MDPI, vol. 18(17), pages 1-16, September.
    25. Rong Wang & Fayuan Wang, 2022. "Exploring the Role of Green Finance and Energy Development towards High-Quality Economic Development: Application of Spatial Durbin Model and Intermediary Effect Model," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    26. Hanghun Jo & Seong-A Kim & Heungsoon Kim, 2022. "Forecasting the Reduction in Urban Air Pollution by Expansion of Market Shares of Eco-Friendly Vehicles: A Focus on Seoul, Korea," IJERPH, MDPI, vol. 19(22), pages 1-25, November.
    27. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    28. Wenbo Li & Ruyin Long & Hong Chen & Baoqi Dou & Feiyu Chen & Xiao Zheng & Zhengxia He, 2020. "Public Preference for Electric Vehicle Incentive Policies in China: A Conjoint Analysis," IJERPH, MDPI, vol. 17(1), pages 1-16, January.
    29. Yaqing He & Weinong Sun & Peter Sai-Wing Leung & Yuk-Tak Chow, 2019. "Effect of Static Magnetic Field of Electric Vehicles on Driving Performance and on Neuro-Psychological Cognitive Functions," IJERPH, MDPI, vol. 16(18), pages 1-10, September.
    30. Renjie Zhang & Hsingwei Tai & Kuotai Cheng & Huizhong Dong & Wenhui Liu & Junjie Hou, 2022. "Carbon Emission Efficiency Network: Evolutionary Game and Sensitivity Analysis between Differentiated Efficiency Groups and Local Governments," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    31. Guerzoni, Marco & Raiteri, Emilio, 2015. "Demand-side vs. supply-side technology policies: Hidden treatment and new empirical evidence on the policy mix," Research Policy, Elsevier, vol. 44(3), pages 726-747.
    32. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Ding, Rui & Zhang, Zusheng, 2022. "Evolutionary dynamics of promoting electric vehicle-charging infrastructure based on public–private partnership cooperation," Energy, Elsevier, vol. 239(PD).
    33. Cahill, Eric & Davies-Shawhyde, Jamie & Turrentine, Thomas S, 2014. "New Car Dealers and Retail Innovation in California’s Plug-In Electric Vehicle Market," Institute of Transportation Studies, Working Paper Series qt9x7255md, Institute of Transportation Studies, UC Davis.
    34. Zhengge Tu & Botao Liu & Dian Jin & Wei Wei & Jiayang Kong, 2022. "The Effect of Carbon Emission Taxes on Environmental and Economic Systems," IJERPH, MDPI, vol. 19(6), pages 1-16, March.
    35. María Carmen Pardo-Ferreira & Juan Antonio Torrecilla-García & Carlos de las Heras-Rosas & Juan Carlos Rubio-Romero, 2020. "New Risk Situations Related to Low Noise from Electric Vehicles: Perception of Workers as Pedestrians and Other Vehicle Drivers," IJERPH, MDPI, vol. 17(18), pages 1-16, September.
    36. Song Wang & Yixiao Wang & Chenxin Zhou & Xueli Wang, 2022. "Projections in Various Scenarios and the Impact of Economy, Population, and Technology for Regional Emission Peak and Carbon Neutrality in China," IJERPH, MDPI, vol. 19(19), pages 1-31, September.
    37. Ewelina Szmytke & Dorota Brzezińska & Waldemar Machnowski & Szymon Kokot, 2022. "Firefighters’ Clothing Contamination in Fires of Electric Vehicle Batteries and Photovoltaic Modules—Literature Review and Pilot Tests Results," IJERPH, MDPI, vol. 19(19), pages 1-15, September.
    38. Han, Jing & Guo, Ju-E & Cai, Xun & Lv, Cheng & Lev, Benjamin, 2022. "An analysis on strategy evolution of research & development in cooperative innovation network of new energy vehicle within policy transition period," Omega, Elsevier, vol. 112(C).
    39. Wenbo Li & Mengzhe Wang & Miao Yu & Xiao Zheng, 2022. "The Impact of Social Conformity on Adopting Decision of Shared Electric Vehicles: A Choice Experiment Analysis in China," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    40. Lei Yang & Meng Lu & Jun Lin & Congsheng Li & Chen Zhang & Zhijing Lai & Tongning Wu, 2019. "Long-Term Monitoring of Extremely Low Frequency Magnetic Fields in Electric Vehicles," IJERPH, MDPI, vol. 16(19), pages 1-9, October.
    41. Li Chen & Di Wang & Ruyi Shi, 2022. "Can China’s Carbon Emissions Trading System Achieve the Synergistic Effect of Carbon Reduction and Pollution Control?," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
    42. Schot, Johan & Steinmueller, W. Edward, 2018. "Three frames for innovation policy: R&D, systems of innovation and transformative change," Research Policy, Elsevier, vol. 47(9), pages 1554-1567.
    43. Xiangyu Luo & Rui Qiu, 2020. "Electric Vehicle Charging Station Location towards Sustainable Cities," IJERPH, MDPI, vol. 17(8), pages 1-22, April.
    44. Wang, Qiang & Zhang, Chen & Li, Rongrong, 2022. "Towards carbon neutrality by improving carbon efficiency - A system-GMM dynamic panel analysis for 131 countries’ carbon efficiency," Energy, Elsevier, vol. 258(C).
    45. Liang Li & Hajar Msaad & Huaping Sun & Mei Xuen Tan & Yeqing Lu & Antonio K.W. Lau, 2020. "Green Innovation and Business Sustainability: New Evidence from Energy Intensive Industry in China," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    46. Vongdala Noudeng & Nguyen Van Quan & Tran Dang Xuan, 2022. "A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    47. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    48. Jichao Geng & Meiyu Ji & Li Yang, 2022. "Role of Enterprise Alliance in Carbon Emission Reduction Mechanism: An Evolutionary Game Analysis," IJERPH, MDPI, vol. 19(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haotong Jiang & Liuyang Yao & Xueru Bai & Hua Li, 2023. "Dynamic Analysis and Simulation of the Feasibility and Stability of Innovative Carbon Emission Reduction Projects Entering the Carbon-Trading Market," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    2. Qiong Chen & Hongyu Zhang & Yui-Yip Lau & Tianni Wang & Wen Wang & Guangsheng Zhang, 2023. "Climate Change, Carbon Peaks, and Carbon Neutralization: A Bibliometric Study from 2006 to 2023," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    3. Peng Liu & Cheng Liu & Zhenpo Wang & Qiushi Wang & Jinlei Han & Yapeng Zhou, 2023. "A Data-Driven Comprehensive Battery SOH Evaluation and Prediction Method Based on Improved CRITIC-GRA and Att-BiGRU," Sustainability, MDPI, vol. 15(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruguo Fan & Rongkai Chen, 2022. "Promotion Policies for Electric Vehicle Diffusion in China Considering Dynamic Consumer Preferences: A Network-Based Evolutionary Analysis," IJERPH, MDPI, vol. 19(9), pages 1-21, April.
    2. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    3. Wang, Yitong & Fan, Ruguo & Du, Kang & Bao, Xuguang, 2023. "Exploring incentives to promote electric vehicles diffusion under subsidy abolition: An evolutionary analysis on multiplex consumer social networks," Energy, Elsevier, vol. 276(C).
    4. Uyarra, Elvira & Zabala-Iturriagagoitia, Jon Mikel & Flanagan, Kieron & Magro, Edurne, 2020. "Public procurement, innovation and industrial policy: Rationales, roles, capabilities and implementation," Research Policy, Elsevier, vol. 49(1).
    5. Grillitsch, Markus & Hansen, Teis & Coenen, Lars & Miörner, Johan & Moodysson, Jerker, 2019. "Innovation policy for system-wide transformation: The case of strategic innovation programmes (SIPs) in Sweden," Research Policy, Elsevier, vol. 48(4), pages 1048-1061.
    6. Edler, Jakob, 2023. "Demand, public procurement and transformation," Discussion Papers "Innovation Systems and Policy Analysis" 79, Fraunhofer Institute for Systems and Innovation Research (ISI).
    7. Jessica Catalano & Francesco Giffoni & Paolo Castelnovo, 2021. "The impact of space procurement on suppliers: Evidence from Italy," Working Papers 202102, CSIL Centre for Industrial Studies.
    8. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    9. Zou, Chen & Huang, Yongchun & Hu, Shiliang & Huang, Zhan, 2023. "Government participation in low-carbon technology transfer: An evolutionary game study," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    10. Ghisetti, Claudia, 2017. "Demand-pull and environmental innovations: Estimating the effects of innovative public procurement," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 178-187.
    11. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    12. Krieger, Bastian & Zipperer, Vera, 2022. "Does green public procurement trigger environmental innovations?," Research Policy, Elsevier, vol. 51(6).
    13. Christoph March & Ina Schieferdecker, 2021. "Technological Sovereignty as Ability, Not Autarky," CESifo Working Paper Series 9139, CESifo.
    14. Hongtao Jiang & Jian Yin & Yuanhong Qiu & Bin Zhang & Yi Ding & Ruici Xia, 2022. "Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces," Land, MDPI, vol. 11(8), pages 1-22, July.
    15. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    16. RAITERI Emilio, 2015. "A time to nourish? Evaluating the impact of innovative public procurement on technological generality through patent data," Cahiers du GREThA (2007-2019) 2015-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    17. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    18. Castelnovo, Paolo & Florio, Massimo & Forte, Stefano & Rossi, Lucio & Sirtori, Emanuela, 2018. "The economic impact of technological procurement for large-scale research infrastructures: Evidence from the Large Hadron Collider at CERN," Research Policy, Elsevier, vol. 47(9), pages 1853-1867.
    19. Lewandowska Małgorzata Stefania & Weresa Marzenna Anna & Rószkiewicz Małgorzata, 2022. "Evaluating the impact of public financial support on innovation activities of European Union enterprises: Additionality approach," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(3), pages 248-266, September.
    20. Raiteri, Emilio, 2018. "A time to nourish? Evaluating the impact of public procurement on technological generality through patent data," Research Policy, Elsevier, vol. 47(5), pages 936-952.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3217-:d:1066045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.