IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v188y2023ics0040162523000057.html
   My bibliography  Save this article

Government participation in low-carbon technology transfer: An evolutionary game study

Author

Listed:
  • Zou, Chen
  • Huang, Yongchun
  • Hu, Shiliang
  • Huang, Zhan

Abstract

Low-carbon technology transfer is the primary means of promoting the industrialization of low-carbon scientific and technological achievements, as well as an important component in accelerating the realization of carbon peak and carbon neutrality. This study uses the evolutionary game model to construct a three-party game relationship consisting of a low-carbon technology sender and receiver along with government participation. Additionally, based on the Green Technology Bank case, we demonstrate the impact of various factors on the three parties' choice of low-carbon technology transfer strategy in the game. The results reveal that the final participation behavior of the government is less influenced by the initial willingness of the sender and receiver to participate. However, the initial participation willingness of the government and low-carbon technology sender has a significant impact on the receiver's participation. Furthermore, the sender's participation is substantially influenced by the government's willingness to participate. Optimizing the cost and benefit distribution mechanism can encourage low-carbon technology transfer subjects to participate. Increasing government incentive and default punishment is more conducive to realizing the three parties' win-win situation in the game. While government incentive has a significant impact on the sender, the increase in default punishment has a considerable effect on the receiver.

Suggested Citation

  • Zou, Chen & Huang, Yongchun & Hu, Shiliang & Huang, Zhan, 2023. "Government participation in low-carbon technology transfer: An evolutionary game study," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:tefoso:v:188:y:2023:i:c:s0040162523000057
    DOI: 10.1016/j.techfore.2023.122320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523000057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao, Xinyu & Liu, Guangfu & Zhang, Xiaoling & Dong, Liang, 2022. "The coevolution mechanism of stakeholder strategies in the recycled resources industry innovation ecosystem: the view of evolutionary game theory," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    2. Bruneel, Johan & D'Este, Pablo & Salter, Ammon, 2010. "Investigating the factors that diminish the barriers to university-industry collaboration," Research Policy, Elsevier, vol. 39(7), pages 858-868, September.
    3. Mowery, David C. & Ziedonis, Arvids A., 2015. "Markets versus spillovers in outflows of university research," Research Policy, Elsevier, vol. 44(1), pages 50-66.
    4. Lommerud, Kjell Erik & Meland, Frode & Straume, Odd Rune, 2012. "North–South technology transfer in unionised multinationals," Journal of Development Economics, Elsevier, vol. 99(2), pages 385-395.
    5. Coad, Alex & de Haan, Peter & Woersdorfer, Julia Sophie, 2009. "Consumer support for environmental policies: An application to purchases of green cars," Ecological Economics, Elsevier, vol. 68(7), pages 2078-2086, May.
    6. Kennedy, Matthew & Basu, Biswajit, 2013. "Overcoming barriers to low carbon technology transfer and deployment: An exploration of the impact of projects in developing and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 685-693.
    7. Ejermo, Olof & Karlsson, Charlie, 2006. "Interregional inventor networks as studied by patent coinventorships," Research Policy, Elsevier, vol. 35(3), pages 412-430, April.
    8. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    9. Zhao, Dan & Ji, Shou-feng & Wang, He-ping & Jiang, Li-wen, 2021. "How do government subsidies promote new energy vehicle diffusion in the complex network context? A three-stage evolutionary game model," Energy, Elsevier, vol. 230(C).
    10. David Campbell & Elias Carayannis & Scheherazade Rehman, 2015. "Quadruple Helix Structures of Quality of Democracy in Innovation Systems: the USA, OECD Countries, and EU Member Countries in Global Comparison," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 6(3), pages 467-493, September.
    11. Shi, Qian & Lai, Xiaodong, 2013. "Identifying the underpin of green and low carbon technology innovation research: A literature review from 1994 to 2010," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 839-864.
    12. Kulmer, Veronika & Seebauer, Sebastian & Hinterreither, Helene & Kortschak, Dominik & Theurl, Michaela C. & Haas, Willi, 2022. "Transforming the s-shape: Identifying and explaining turning points in market diffusion curves of low-carbon technologies in Austria," Research Policy, Elsevier, vol. 51(1).
    13. Horner, Sam & Jayawarna, Dilani & Giordano, Benito & Jones, Oswald, 2019. "Strategic choice in universities: Managerial agency and effective technology transfer," Research Policy, Elsevier, vol. 48(5), pages 1297-1309.
    14. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models," Energy, Elsevier, vol. 93(P2), pages 2436-2450.
    15. Grzegorczyk, Malgorzata, 2019. "The role of culture-moderated social capital in technology transfer – insights from Asia and America," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 132-141.
    16. Pueyo, Ana, 2013. "Enabling frameworks for low-carbon technology transfer to small emerging economies: Analysis of ten case studies in Chile," Energy Policy, Elsevier, vol. 53(C), pages 370-380.
    17. Inge Ivarsson & Claes Göran Alvstam, 2005. "The Effect of Spatial Proximity on Technology Transfer from TNCs to Local Suppliers in Developing Countries: The Case of AB Volvo in Asia and Latin America," Economic Geography, Taylor & Francis Journals, vol. 81(1), pages 83-111, January.
    18. Chen, Kaihua & Zhang, Chao & Feng, Ze & Zhang, Yi & Ning, Lutao, 2022. "Technology transfer systems and modes of national research institutes: evidence from the Chinese academy of sciences," Research Policy, Elsevier, vol. 51(3).
    19. Younhee Kim, 2013. "The ivory tower approach to entrepreneurial linkage: productivity changes in university technology transfer," The Journal of Technology Transfer, Springer, vol. 38(2), pages 180-197, April.
    20. Mojtaba Bahmani & Nejati Mehdi, 2015. "Trade-based Technology Transfer and Its Impact on the Iranian Economy: Using a CGE Model," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(1), pages 107-122, Winter.
    21. Encarnação, Sara & Santos, Fernando P. & Santos, Francisco C. & Blass, Vered & Pacheco, Jorge M. & Portugali, Juval, 2018. "Paths to the adoption of electric vehicles: An evolutionary game theoretical approach," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 24-33.
    22. Kypreos, Socrates, 2007. "A MERGE model with endogenous technological change and the cost of carbon stabilization," Energy Policy, Elsevier, vol. 35(11), pages 5327-5336, November.
    23. Marcus Gumpert, 2016. "Rational underdevelopment: regional economic disparities under the Heckscher-Ohlin Theorem," International Review of Applied Economics, Taylor & Francis Journals, vol. 30(1), pages 89-111, January.
    24. Xia Gao & Jiancheng Guan & Ronald Rousseau, 2011. "Mapping collaborative knowledge production in China using patent co-inventorships," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 343-362, August.
    25. Osabutey, Ellis L.C. & Croucher, Richard, 2018. "Intermediate institutions and technology transfer in developing countries: The case of the construction industry in Ghana," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 154-163.
    26. David J. Jefferson & Magali Maida & Alexander Farkas & Monica Alandete-Saez & Alan B. Bennett, 2017. "Technology transfer in the Americas: common and divergent practices among major research universities and public sector institutions," The Journal of Technology Transfer, Springer, vol. 42(6), pages 1307-1333, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denisa Szabo & Mihai Dragomir & Mihail Țîțu & Diana Dragomir & Sorin Popescu & Silvia Tofană, 2023. "Sustainable Low-Carbon Production: From Strategy to Reality," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    2. Lequn Zhu & Ran Zhou & Xiaojun Li & Linlin Zhang, 2023. "An Evolutionary Game Analysis of Shared Private Charging Pile Behavior in Low-Carbon Urban Traffic," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    3. Svetlana Kunskaja & Johannes Fabian Bauer & Artur Budzyński & Ilie-Ciprian Jitea, 2023. "A research analysis: the implementation of innovative energy technologies and their alignment with SDG 12," Eastern-European Journal of Enterprise Technologies, PC TECHNOLOGY CENTER, vol. 5(13 (125)), pages 6-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Gaoxiang & Wang, Zheng & Wu, Leying, 2021. "Carbon emission reductions under global low-carbon technology transfer and its policy mix with R&D improvement," Energy, Elsevier, vol. 216(C).
    2. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    3. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    4. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
    5. Nivedita Mukherji & Jonathan Silberman, 2021. "Knowledge flows between universities and industry: the impact of distance, technological compatibility, and the ability to diffuse knowledge," The Journal of Technology Transfer, Springer, vol. 46(1), pages 223-257, February.
    6. Tao Li & Lei Ma & Zheng Liu & Chaonan Yi & Kaitong Liang, 2023. "Dual Carbon Goal-Based Quadrilateral Evolutionary Game: Study on the New Energy Vehicle Industry in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    7. Bodas Freitas Isabel Maria & Federica Rossi & Aldo Geuna, 2014. "Collaboration objectives and the location of the university partner: Evidence from the Piedmont region in Italy," Papers in Regional Science, Wiley Blackwell, vol. 93, pages 203-226, November.
    8. Sun, Yutao, 2016. "The structure and dynamics of intra- and inter-regional research collaborative networks: The case of China (1985–2008)," Technological Forecasting and Social Change, Elsevier, vol. 108(C), pages 70-82.
    9. Li-cai Lei & Shang Gao & En-yu Zeng, 2020. "Regulation strategies of ride-hailing market in China: an evolutionary game theoretic perspective," Electronic Commerce Research, Springer, vol. 20(3), pages 535-563, September.
    10. Massimo G. Colombo & Massimiliano Guerini & Cristina Rossi-Lamastra & Andrea Bonaccorsi, 2022. "The “first match” between high-tech entrepreneurial ventures and universities: the role of founders’ social ties," The Journal of Technology Transfer, Springer, vol. 47(1), pages 270-306, February.
    11. Tan, Bing Qing & Kang, Kai & Zhong, Ray Y., 2023. "Electric vehicle charging infrastructure investment strategy analysis: State-owned versus private parking lots," Transport Policy, Elsevier, vol. 141(C), pages 54-71.
    12. Shu-Hao Chang, 2017. "The evolutionary growth estimation model of international cooperative patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 711-729, August.
    13. Ruguo Fan & Rongkai Chen, 2022. "Promotion Policies for Electric Vehicle Diffusion in China Considering Dynamic Consumer Preferences: A Network-Based Evolutionary Analysis," IJERPH, MDPI, vol. 19(9), pages 1-21, April.
    14. Liao, Dongsheng & Tan, Binbin, 2023. "An evolutionary game analysis of new energy vehicles promotion considering carbon tax in post-subsidy era," Energy, Elsevier, vol. 264(C).
    15. Wang, Yitong & Fan, Ruguo & Du, Kang & Bao, Xuguang, 2023. "Exploring incentives to promote electric vehicles diffusion under subsidy abolition: An evolutionary analysis on multiplex consumer social networks," Energy, Elsevier, vol. 276(C).
    16. Gu, Gaoxiang & Wang, Zheng, 2018. "China’s carbon emissions abatement under industrial restructuring by investment restriction," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 133-144.
    17. Yutao Sun & Kai Liu, 2016. "Proximity effect, preferential attachment and path dependence in inter-regional network: a case of China’s technology transaction," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 201-220, July.
    18. Zhao, Chuan & Ma, Xuying & Wang, Kun, 2022. "The electric vehicle promotion in the cold-chain logistics under two-sided support policy: An evolutionary game perspective," Transport Policy, Elsevier, vol. 121(C), pages 14-34.
    19. Liu, Peide & Li, Xina & Li, Jialu, 2023. "Competitive firms’ low-carbon technology diffusion under pollution regulations: A network-based evolutionary analysis," Energy, Elsevier, vol. 282(C).
    20. Conor O’Kane & James A. Cunningham & Matthias Menter & Sara Walton, 2021. "The brokering role of technology transfer offices within entrepreneurial ecosystems: an investigation of macro–meso–micro factors," The Journal of Technology Transfer, Springer, vol. 46(6), pages 1814-1844, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:188:y:2023:i:c:s0040162523000057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.