IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i2p958-d725498.html
   My bibliography  Save this article

An Analysis of Agricultural Production Efficiency of Yangtze River Economic Belt Based on a Three-Stage DEA Malmquist Model

Author

Listed:
  • Zhiwei Pan

    (School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Decai Tang

    (School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
    China Institute of Manufacturing Development, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Haojia Kong

    (School of Economics and Management, Nanjing University of Science & Technology, Nanjing 210000, China)

  • Junxia He

    (School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

The Yangtze River Economic Belt (YREB) is a major national strategic development area in China, and the development of the YREB will greatly promote the development of the entirety China, so research on its agricultural production efficiency is also of great significance. This paper is committed to studying the agricultural production efficiency of 11 provinces in the YREB and adopts a combination of the Data Envelopment Analysis (DEA) model and the Malmquist index to make a dynamic and static analysis on the YREB’s agricultural production efficiency from 2010 to 2019. Then, a three-stage DEA Malmquist model that eliminates the factors of random interference and management inefficiency is compared to a model without elimination. The results show that the adjusted technological efficiency changes, technological progress, and total factor productivity increased by −0.1%, 0.24%, and 0.22%, respectively. When comparing these values to the pre-adjustment values, the results indicate that the effect of environmental variables cannot be ignored when studying the agricultural production efficiency of the YREB. At the same time, the differences in the agricultural production efficiency in the YREB are reasonably explained, and feasible suggestions are put forward.

Suggested Citation

  • Zhiwei Pan & Decai Tang & Haojia Kong & Junxia He, 2022. "An Analysis of Agricultural Production Efficiency of Yangtze River Economic Belt Based on a Three-Stage DEA Malmquist Model," IJERPH, MDPI, vol. 19(2), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:2:p:958-:d:725498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/2/958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/2/958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Decai Tang & Yan Zhang & Brandon J Bethel, 2020. "A Comprehensive Evaluation of Carbon Emission Reduction Capability in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 17(2), pages 1-16, January.
    2. Fei, Rilong & Lin, Ziyi & Chunga, Joseph, 2021. "How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector," Land Use Policy, Elsevier, vol. 103(C).
    3. Manevska-Tasevska, Gordana & Hansson, Helena & Asmild, Mette & Surry, Yves, 2021. "Exploring the regional efficiency of the Swedish agricultural sector during the CAP reforms ‒ multi-directional efficiency analysis approach," Land Use Policy, Elsevier, vol. 100(C).
    4. Deng, Xiangzheng & Gibson, John, 2019. "Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 394-400.
    5. Wang, Sun Ling & Huang, Jikun & Wang, Xiaobing & Tuan, Francis, 2019. "Are China’s regional agricultural productivities converging: How and why?," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    6. Adom, Philip Kofi & Adams, Samuel, 2020. "Decomposition of technical efficiency in agricultural production in Africa into transient and persistent technical efficiency under heterogeneous technologies," World Development, Elsevier, vol. 129(C).
    7. Yigezu, Yigezu A. & Ahmed, Mohamed A. & Shideed, Kamil & Aw-Hassan, Aden & El-Shater, Tamer & Al-Atwan, Samman, 2013. "Implications of a shift in irrigation technology on resource use efficiency: A Syrian case," Agricultural Systems, Elsevier, vol. 118(C), pages 14-22.
    8. Renato Villano & Euan Fleming, 2006. "Technical Inefficiency and Production Risk in Rice Farming: Evidence from Central Luzon Philippines," Asian Economic Journal, East Asian Economic Association, vol. 20(1), pages 29-46, March.
    9. Zhijiang Li & Decai Tang & Mang Han & Brandon J. Bethel, 2018. "Comprehensive Evaluation of Regional Sustainable Development Based on Data Envelopment Analysis," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    10. Hahn, G.J. & Brandenburg, M. & Becker, J., 2021. "Valuing supply chain performance within and across manufacturing industries: A DEA-based approach," International Journal of Production Economics, Elsevier, vol. 240(C).
    11. Wanke, Peter & Tsionas, Mike G. & Chen, Zhongfei & Moreira Antunes, Jorge Junio, 2020. "Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 456-468.
    12. Decai Tang & Yan Zhang & Brandon J. Bethel, 2019. "An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(8), pages 1-13, April.
    13. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
    14. Mosbah, Ezzeddine & Zaibet, Lokman & Dharmapala, P. Sunil, 2020. "A new methodology to measure efficiencies of inputs (outputs) of decision making units in Data Envelopment Analysis with application to agriculture," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    15. Jingwei Xiang & Xiaoqing Song & Jiangfeng Li, 2019. "Cropland Use Transitions and Their Driving Factors in Poverty-Stricken Counties of Western Hubei Province, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    16. Shen, Zhiyang & Baležentis, Tomas & Chen, Xueli & Valdmanis, Vivian, 2018. "Green growth and structural change in Chinese agricultural sector during 1997–2014," China Economic Review, Elsevier, vol. 51(C), pages 83-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oluwakemi Adeola Obayelu & Ifeoluwa Tunrayo Awoku & Fatai Abiola Sowunmi & Mudashiru Akinyemi, 0. "Technical Efficiency Dynamics In Smallholding Cassava-Based Farming In Rural Nigeria," Food & Agribusiness Management (FABM), Zibeline International Publishing, vol. 3(2), pages 67-73.
    2. Haokun Wang & Hong Chen & Tuyen Thi Tran & Shuai Qin, 2022. "An Analysis of the Spatiotemporal Characteristics and Diversity of Grain Production Resource Utilization Efficiency under the Constraint of Carbon Emissions: Evidence from Major Grain-Producing Areas ," IJERPH, MDPI, vol. 19(13), pages 1-25, June.
    3. Jianlin Wang & Junbo Tong & Zhong Fang, 2024. "Assessing the Drivers of Sustained Agricultural Economic Development in China: Agricultural Productivity and Poverty Reduction Efficiency," Sustainability, MDPI, vol. 16(5), pages 1-18, March.
    4. Guangdi Zhang & Yaojun Ye & Mengya Sun, 2023. "Assessing the Static and Dynamic Efficiency of Digital Economy in China: Three Stage DEA–Malmquist Index Based Approach," Sustainability, MDPI, vol. 15(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yufeng & Miao, Jiafeng, 2023. "What Determines China’s Agricultural Non-Point Source Pollution? An Improved LMDI Decomposition Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    2. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    3. Zhe Zhao & Pengyu Peng & Fan Zhang & Jiayin Wang & Hongxuan Li, 2022. "The Impact of the Urbanization Process on Agricultural Technical Efficiency in Northeast China," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    4. Jianxu Liu & Mengjiao Wang & Li Yang & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Agricultural Productivity Growth and Its Determinants in South and Southeast Asian Countries," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    5. Chen, Hao, 2022. "Industrial production evaluation with the consideration of technology accumulation," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 72-84.
    6. Lin Shi & Xiaofei Shi & Fan Yang & Lixue Zhang, 2023. "Spatio-Temporal Difference in Agricultural Eco-Efficiency and Its Influencing Factors Based on the SBM-Tobit Models in the Yangtze River Delta, China," IJERPH, MDPI, vol. 20(6), pages 1-22, March.
    7. Jianxu Liu & Changrui Dong & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    8. Chao Wang & Xi Chu & Jinyan Zhan & Pei Wang & Fan Zhang & Zhongling Xin, 2019. "Factors Contributing to Efficient Forest Production in the Region of the Three-North Shelter Forest Program, China," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    9. Liu, Yansui & Zou, Lilin & Wang, Yongsheng, 2020. "Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years," Land Use Policy, Elsevier, vol. 97(C).
    10. Yuhan Wang & Chenyujing Yang & Yuanyuan Zhang & Yongji Xue, 2023. "Mountainous Areas: Alleviating the Shortage of Cultivated Land Caused by Changing Dietary Structure in China," Land, MDPI, vol. 12(7), pages 1-19, July.
    11. Tao Chen & Muhammad Rizwan & Azhar Abbas, 2022. "Exploring the Role of Agricultural Services in Production Efficiency in Chinese Agriculture: A Case of the Socialized Agricultural Service System," Land, MDPI, vol. 11(3), pages 1-18, February.
    12. Ruimin Yin & Zhanqi Wang & Ji Chai & Yunxiao Gao & Feng Xu, 2022. "The Evolution and Response of Space Utilization Efficiency and Carbon Emissions: A Comparative Analysis of Spaces and Regions," Land, MDPI, vol. 11(3), pages 1-21, March.
    13. Krzysztof Piotr Pawłowski & Wawrzyniec Czubak & Jagoda Zmyślona, 2021. "Regional Diversity of Technical Efficiency in Agriculture as a Results of an Overinvestment: A Case Study from Poland," Energies, MDPI, vol. 14(11), pages 1-20, June.
    14. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Muhammad Rizwan & Ping Qing & Abdul Saboor & Muhammad Amjed Iqbal & Adnan Nazir, 2020. "Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    16. Shuai Qin & Hong Chen & Tuyen Thi Tran & Haokun Wang, 2022. "Analysis of the Spatial Effect of Capital Misallocation on Agricultural Output—Taking the Main Grain Producing Areas in Northeast China as an Example," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    17. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    18. Zhong, Meirui & Huang, Gangli & He, Ruifang, 2022. "The technological innovation efficiency of China's lithium-ion battery listed enterprises: Evidence from a three-stage DEA model and micro-data," Energy, Elsevier, vol. 246(C).
    19. Liu, Haiyue & Zhang, Ruchuan & Zhou, Li & Li, Aijun, 2023. "Evaluating the financial performance of companies from the perspective of fund procurement and application: New strategy cross efficiency network data envelopment analysis models," Energy, Elsevier, vol. 269(C).
    20. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:2:p:958-:d:725498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.