IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p15540-d981862.html
   My bibliography  Save this article

Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?

Author

Listed:
  • Shunbin Zhong

    (School of Business, Minnan Normal University, Zhangzhou 363000, China
    These authors contributed equally to this work.)

  • Huafu Shen

    (School of Business, Minnan Normal University, Zhangzhou 363000, China
    These authors contributed equally to this work.)

  • Ziheng Niu

    (Academy of Strategies for Innovation and Development, Anhui University, Hefei 230039, China)

  • Yang Yu

    (School of Economics, Hainan University, Haikou 570228, China)

  • Lin Pan

    (College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China)

  • Yaojun Fan

    (Chinese International College, Dhurakij Pundit University, Bangkok 10210, Thailand)

  • Atif Jahanger

    (School of Economics, Hainan University, Haikou 570228, China)

Abstract

In the context of environmental sustainability and accelerated digital technology development, China attaches great importance to the prominent role of digital economy in addressing environmental degradation. Utilizing Chinese provincial panel data from 2011 to 2019, this study investigates whether the digital economy can improve China’s environmental sustainability proxy by reducing carbon emission intensity. Based on the fixed effects model, the findings reveal that the digital economy has a significant negative effect on carbon emission intensity and the conclusion remains robust after conducting several robustness checks. However, this impact shows regional heterogeneity, which is more effective in resource-based eastern regions and the Belt and Road provinces. Moreover, mediating effect analyses indicate that the transmission mechanisms are energy consumption structure, total factor energy productivity, and green technology innovation. Furthermore, the results based on the spatial Durbin model (SDM) demonstrate that digital economy development has a significant spatial spillover effect. Finally, on the basis of results analysis and discussion, policy recommendations are provided for achieving environmental sustainability.

Suggested Citation

  • Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:15540-:d:981862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/15540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/15540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhattacharya, Mita & Rafiq, Shuddhasattwa & Bhattacharya, Sankar, 2015. "The role of technology on the dynamics of coal consumption–economic growth: New evidence from China," Applied Energy, Elsevier, vol. 154(C), pages 686-695.
    2. Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    3. Zihanxin Li & Nuoyan Li & Huwei Wen, 2021. "Digital Economy and Environmental Quality: Evidence from 217 Cities in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    4. Alberto Alesina & Ekaterina Zhuravskaya, 2011. "Segregation and the Quality of Government in a Cross Section of Countries," American Economic Review, American Economic Association, vol. 101(5), pages 1872-1911, August.
    5. Asongu, Simplice A. & Le Roux, Sara & Biekpe, Nicholas, 2018. "Enhancing ICT for environmental sustainability in sub-Saharan Africa," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 209-216.
    6. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    7. Sa Xu & Cunyi Yang & Zhehao Huang & Pierre Failler, 2022. "Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    8. Neves, Sónia Almeida & Marques, António Cardoso & Patrício, Margarida, 2020. "Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 114-125.
    9. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    10. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    12. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    13. Diána Esses & Mária Szalmáné Csete & Bálint Németh, 2021. "Sustainability and Digital Transformation in the Visegrad Group of Central European Countries," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    14. Xiaoyan Li & Jia Liu & Peijie Ni, 2021. "The Impact of the Digital Economy on CO 2 Emissions: A Theoretical and Empirical Analysis," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    15. Ayoub Zeraibi & Daniel Balsalobre-Lorente & Khurram Shehzad, 2021. "Testing the Environmental Kuznets Curve Hypotheses in Chinese Provinces: A Nexus between Regional Government Expenditures and Environmental Quality," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    16. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    17. Li Yang & Sumaiya Bashiru Danwana & Fadilul-lah Yassaanah Issahaku, 2022. "Achieving Environmental Sustainability in Africa: The Role of Renewable Energy Consumption, Natural Resources, and Government Effectiveness—Evidence from Symmetric and Asymmetric ARDL Models," IJERPH, MDPI, vol. 19(13), pages 1-26, June.
    18. Roca, Jordi & Padilla, Emilio & Farre, Mariona & Galletto, Vittorio, 2001. "Economic growth and atmospheric pollution in Spain: discussing the environmental Kuznets curve hypothesis," Ecological Economics, Elsevier, vol. 39(1), pages 85-99, October.
    19. Adeoluwa Akande & Pedro Cabral & Sven Casteleyn, 2019. "Assessing the Gap between Technology and the Environmental Sustainability of European Cities," Information Systems Frontiers, Springer, vol. 21(3), pages 581-604, June.
    20. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    21. Shangrong Jiang & Yuze Li & Quanying Lu & Yongmiao Hong & Dabo Guan & Yu Xiong & Shouyang Wang, 2021. "Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    22. Amri, Fethi & Zaied, Younes Ben & Lahouel, Bechir Ben, 2019. "ICT, total factor productivity, and carbon dioxide emissions in Tunisia," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 212-217.
    23. Adriana Grigorescu & Elena Pelinescu & Amalia Elena Ion & Monica Florica Dutcas, 2021. "Human Capital in Digital Economy: An Empirical Analysis of Central and Eastern European Countries from the European Union," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    24. Shahbaz, Muhammad & Destek, Mehmet Akif & Dong, Kangyin & Jiao, Zhilun, 2021. "Time-varying impact of financial development on carbon emissions in G-7 countries: Evidence from the long history," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    25. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    26. Jing Wang & Yubing Xu, 2022. "How Does Digitalization Affect Haze Pollution? The Mediating Role of Energy Consumption," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    27. Yang Liu & Yanlin Yang & Huihui Li & Kaiyang Zhong, 2022. "Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    28. Xu, Guangyue & Dong, Haoyun & Xu, Zhenci & Bhattarai, Nishan, 2022. "China can reach carbon neutrality before 2050 by improving economic development quality," Energy, Elsevier, vol. 243(C).
    29. Ma, Qiang & Tariq, Muhammad & Mahmood, Haider & Khan, Zeeshan, 2022. "The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development," Technology in Society, Elsevier, vol. 68(C).
    30. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    31. Wei Yang & Qiuxia Chen & Qiuqi Guo & Xiaoting Huang, 2022. "Towards Sustainable Development: How Digitalization, Technological Innovation, and Green Economic Development Interact with Each Other," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    32. Canzian, Giulia & Poy, Samuele & Schüller, Simone, 2019. "Broadband upgrade and firm performance in rural areas: Quasi-experimental evidence," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 87-103.
    33. Yingying Zhou & Zhuoqing Fang & Nan Li & Xueyan Wu & Yuehan Du & Zonghan Liu, 2019. "How Does Financial Development Affect Reductions in Carbon Emissions in High-Energy Industries?—A Perspective on Technological Progress," IJERPH, MDPI, vol. 16(17), pages 1-25, August.
    34. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    35. Fan Wang & Yao Lu & Jin Li & Juan Ni, 2021. "Evaluating Environmentally Sustainable Development Based on the PSR Framework and Variable Weigh Analytic Hierarchy Process," IJERPH, MDPI, vol. 18(6), pages 1-16, March.
    36. Xueyang Wang & Xiumei Sun & Haotian Zhang & Chaokai Xue, 2022. "Digital Economy Development and Urban Green Innovation CA-Pability: Based on Panel Data of 274 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    37. Li, Guangqin & Xue, Qing & Qin, Jiahong, 2022. "Environmental information disclosure and green technology innovation: Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    38. Qiu, Leiju & Zhong, Shunbin & Sun, Baowen, 2021. "Blessing or curse? The effect of broadband Internet on China’s inter-city income inequality," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 626-650.
    39. Aline Chiabai & Dirk Rübbelke & Lisa Maurer, 2013. "ICT applications in the research into environmental sustainability: a user preferences approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(1), pages 81-100, February.
    40. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    41. Xiangyu Tian & Yuanxi Zhang & Guohua Qu, 2022. "The Impact of Digital Economy on the Efficiency of Green Financial Investment in China’s Provinces," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    42. Xiaoxia Chen & Mélanie Despeisse & Björn Johansson, 2020. "Environmental Sustainability of Digitalization in Manufacturing: A Review," Sustainability, MDPI, vol. 12(24), pages 1-31, December.
    43. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    44. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    45. J. Paul Elhorst, 2014. "Matlab Software for Spatial Panels," International Regional Science Review, , vol. 37(3), pages 389-405, July.
    46. Liang Li & Hajar Msaad & Huaping Sun & Mei Xuen Tan & Yeqing Lu & Antonio K.W. Lau, 2020. "Green Innovation and Business Sustainability: New Evidence from Energy Intensive Industry in China," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    47. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    48. Debin Fang & Peng Hao & Zhengxin Wang & Jian Hao, 2019. "Analysis of the Influence Mechanism of CO 2 Emissions and Verification of the Environmental Kuznets Curve in China," IJERPH, MDPI, vol. 16(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shunbin Zhong & Mengding Li & Yihui Liu & Yun Bai, 2023. "Do Internet Development and Urbanization Foster Regional Economic Growth: Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    2. Cai Chen & Shunbin Zhong & Yingli Zhang & Yun Bai, 2023. "The Economic Impact of Green Credit: From the Perspective of Industrial Structure and Green Total Factor Productivity," Sustainability, MDPI, vol. 15(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    2. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    3. Xinfeng Chang & Jian Su & Zihe Yang, 2022. "The Effect of Digital Economy on Urban Green Transformation—An Empirical Study Based on the Yangtze River Delta City Cluster in China," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    4. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    5. Zhu, Qing & Ma, Dan & He, Xin, 2023. "Digital transformation and firms' pollution emissions," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    6. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    8. Guo, Bingnan & Wang, Yu & Zhang, Hao & Liang, Chunyan & Feng, Yu & Hu, Feng, 2023. "Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities," Economic Modelling, Elsevier, vol. 120(C).
    9. Zhenzhen Liao & Shaofeng Ru & Yiyang Cheng, 2023. "A Simulation Study on the Impact of the Digital Economy on CO 2 Emission Based on the System Dynamics Model," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    10. Yue Cheng & Dong Zheng, 2023. "Does the Digital Economy Promote Coordinated Urban–Rural Development? Evidence from China," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    11. Huaxue Zhao & Yu Cheng & Ruijing Zheng, 2022. "Impact of the Digital Economy on PM 2.5 : Experience from the Middle and Lower Reaches of the Yellow River Basin," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    12. Ning Xu & He Zhang & Tixin Li & Xiao Ling & Qian Shen, 2022. "How Big Data Affect Urban Low-Carbon Transformation—A Quasi-Natural Experiment from China," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    13. Senhua Huang & Feng Han & Lingming Chen, 2023. "Can the Digital Economy Promote the Upgrading of Urban Environmental Quality?," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    14. Kai Yuan & Biao Hu & Xinlong Li & Tingyun Niu & Liang Zhang, 2023. "Exploration of Coupling Effects in the Digital Economy and Eco-Economic System Resilience in Urban Areas: Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    15. Nan Li & Beibei Shi & Rong Kang, 2023. "Analysis of the Coupling Effect and Space-Time Difference between China’s Digital Economy Development and Carbon Emissions Reduction," IJERPH, MDPI, vol. 20(1), pages 1-25, January.
    16. Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    17. Shuangcheng Luo & Yangli Yuan, 2023. "The Path to Low Carbon: The Impact of Network Infrastructure Construction on Energy Conservation and Emission Reduction," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    18. Zhuoxi Yu & Shan Liu & Zhichuan Zhu, 2022. "Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    19. Qin, Xiaodi & Wu, Haitao & Li, Rongrong, 2022. "Digital finance and household carbon emissions in China," China Economic Review, Elsevier, vol. 76(C).
    20. Hong Tang & Chaoyue Cai & Chunxiao Xu, 2022. "Does the Digital Economy Improve Urban Tourism Development? An Examination of the Chinese Case," Sustainability, MDPI, vol. 14(23), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:15540-:d:981862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.