IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11814-d919062.html
   My bibliography  Save this article

Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China

Author

Listed:
  • Zhuoxi Yu

    (School of Mathematics and Statistics, Liaoning University, Shenyang 110031, China)

  • Shan Liu

    (School of Economics, Liaoning University, Shenyang 110136, China)

  • Zhichuan Zhu

    (School of Mathematics and Statistics, Liaoning University, Shenyang 110031, China)

Abstract

China is undergoing an urbanization process at an unprecedented scale, and low-carbon urban development is of great significance to the completion of the “dual carbon goals”. At the same time, the digital economy has become an important engine for urban development, and its role in environmental improvement has become increasingly prominent. While the digital economy is booming, can it promote the low-carbon development of cities? Based on the panel data of 278 cities in China from 2011 to 2019, this paper discusses the impact of the digital economy on carbon emissions and the long-term development trend between the digital economy and carbon emissions, the impact of differences in the development level of the digital economy on carbon emissions reduction, and the impact of green energy efficiency in the relationship between the digital economy and carbon emissions. The results show that the digital economy has a significant inhibitory effect on carbon emissions, and with the development of the digital economy, more and more cities show an absolute decoupling of the digital economy and carbon emissions and are turning to low-carbon development. The development level of the digital economy has a heterogeneous impact on carbon emissions. With the improvement of the development level of the digital economy, the effect on emission reduction is more significant. As a threshold variable, green energy efficiency affects the relationship between digital economy and carbon emissions. When green energy efficiency is low, the digital economy promotes carbon emissions, and when green energy efficiency is high, the digital economy reduces carbon emissions.

Suggested Citation

  • Zhuoxi Yu & Shan Liu & Zhichuan Zhu, 2022. "Has the Digital Economy Reduced Carbon Emissions?: Analysis Based on Panel Data of 278 Cities in China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11814-:d:919062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuming Ren & Lianqing Li & Yueqi Han & Yu Hao & Haitao Wu, 2022. "The emerging driving force of inclusive green growth: Does digital economy agglomeration work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1656-1678, May.
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    4. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    5. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    6. Blichfeldt, Henrik & Faullant, Rita, 2021. "Performance effects of digital technology adoption and product & service innovation – A process-industry perspective," Technovation, Elsevier, vol. 105(C).
    7. Liang, Xiaoying & Min Fan, & Xiao, Yuting & Yao, Jing, 2022. "Temporal-spatial characteristics of energy-based carbon dioxide emissions and driving factors during 2004–2019, China," Energy, Elsevier, vol. 261(PA).
    8. Shen, Huayu & Hou, Fei, 2021. "Trade policy uncertainty and corporate innovation evidence from Chinese listed firms in new energy vehicle industry," Energy Economics, Elsevier, vol. 97(C).
    9. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    10. Destek, Mehmet Akif & Aslan, Alper, 2017. "Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality," Renewable Energy, Elsevier, vol. 111(C), pages 757-763.
    11. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    12. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    13. Cai, Bofeng & Cui, Can & Zhang, Da & Cao, Libin & Wu, Pengcheng & Pang, Lingyun & Zhang, Jihong & Dai, Chunyan, 2019. "China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Ma, Qiang & Tariq, Muhammad & Mahmood, Haider & Khan, Zeeshan, 2022. "The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development," Technology in Society, Elsevier, vol. 68(C).
    15. Gao, Da & Li, Ge & Yu, Jiyu, 2022. "Does digitization improve green total factor energy efficiency? Evidence from Chinese 213 cities," Energy, Elsevier, vol. 247(C).
    16. Xueyang Wang & Xiumei Sun & Haotian Zhang & Chaokai Xue, 2022. "Digital Economy Development and Urban Green Innovation CA-Pability: Based on Panel Data of 274 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    17. Watanabe, Chihiro & Naveed, Kashif & Tou, Yuji & Neittaanmäki, Pekka, 2018. "Measuring GDP in the digital economy: Increasing dependence on uncaptured GDP," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 226-240.
    18. Zhichuan Zhu & Bo Liu & Zhuoxi Yu & Jianhong Cao, 2022. "Effects of the Digital Economy on Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    19. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    20. Peng Hou & Yilin Li & Yong Tan & Yuanjie Hou, 2020. "Energy Price and Energy Efficiency in China: A Linear and Nonlinear Empirical Investigation," Energies, MDPI, vol. 13(16), pages 1-24, August.
    21. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    22. Zheng Li & Congling Pang & Hasan Dinçer, 2022. "Does Digital Economy Contribute to Regional Carbon Productivity? Evidence of China," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, July.
    23. Wang, Zilong & Wang, Xinbin, 2022. "Research on the impact of green finance on energy efficiency in different regions of China based on the DEA-Tobit model," Resources Policy, Elsevier, vol. 77(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Xu & Salim Khan, 2023. "How Do R&D and Renewable Energy Consumption Lead to Carbon Neutrality? Evidence from G-7 Economies," IJERPH, MDPI, vol. 20(5), pages 1-15, March.
    2. Xiaoying Lei & Yifei Ma & Jinkai Ke & Caihong Zhang, 2023. "The Non-Linear Impact of the Digital Economy on Carbon Emissions Based on a Mediated Effects Model," Sustainability, MDPI, vol. 15(9), pages 1-14, April.
    3. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    4. Qian Zhang & Qizhen Wang, 2023. "Digitalization, Electricity Consumption and Carbon Emissions—Evidence from Manufacturing Industries in China," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    5. Lu Liu & Yuxin Meng & Qiying Ran, 2023. "The Impact and Mechanism of the Digital Economy on Carbon Emission Efficiency: A Perspective Based on Provincial Panel Data in China," Sustainability, MDPI, vol. 15(19), pages 1-15, September.
    6. Shijin Wang & Fan Tong, 2022. "Impact of Internet Development on Carbon Emissions in Jiangsu, China," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    7. Guoteng Xu & Shuai Peng & Chengjiang Li & Xia Chen, 2023. "Synergistic Evolution of China’s Green Economy and Digital Economy Based on LSTM-GM and Grey Absolute Correlation," Sustainability, MDPI, vol. 15(19), pages 1-29, September.
    8. Yukun Ma & Shaojian Wang & Chunshan Zhou, 2023. "Can the Development of the Digital Economy Reduce Urban Carbon Emissions? Case Study of Guangdong Province," Land, MDPI, vol. 12(4), pages 1-13, March.
    9. Xuan Chang & Jinye Li, 2022. "Effects of the Digital Economy on Carbon Emissions in China: A Spatial Durbin Econometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    10. Wei Zhang & Hao Zhou & Jie Chen & Zifu Fan, 2022. "An Empirical Analysis of the Impact of Digital Economy on Manufacturing Green and Low-Carbon Transformation under the Dual-Carbon Background in China," IJERPH, MDPI, vol. 19(20), pages 1-22, October.
    11. Fanbao Xie & Xin Guan & Junfan Zhu & Jun Ruan & Zeyu Wang & Hejian Liu, 2023. "Environmental Protection Goes Digital: A Policy Perspective on Promoting Digitalization for Sustainable Development in China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    12. Ning Xu & He Zhang & Tixin Li & Xiao Ling & Qian Shen, 2022. "How Big Data Affect Urban Low-Carbon Transformation—A Quasi-Natural Experiment from China," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    13. Pingguo Xu & Leyi Chen & Huajuan Dai, 2022. "Pathways to Sustainable Development: Corporate Digital Transformation and Environmental Performance in China," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    14. Jie Li & Zhengchuan Sun & Jie Zhou & Yaya Sow & Xufeng Cui & Haipeng Chen & Qianling Shen, 2023. "The Impact of the Digital Economy on Carbon Emissions from Cultivated Land Use," Land, MDPI, vol. 12(3), pages 1-18, March.
    15. Fengge Yao & Ying Song & Xiaomei Wang, 2023. "How the Digital Economy Empowers the Structural Upgrading of Cultural Industries—An Analysis Based on the Spatial Durbin Model," Sustainability, MDPI, vol. 15(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    2. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    3. Shuangjie Li & Wei Wang & Liming Wang & Ge Wang, 2023. "Digital Economy and 3E Efficiency Performance: Evidence from EU Countries," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    4. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    5. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    7. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    8. Da Gao & Chang Liu & Xinyan Wei & Yang Liu, 2023. "Can River Chief System Policy Improve Enterprises’ Energy Efficiency? Evidence from China," IJERPH, MDPI, vol. 20(4), pages 1-17, February.
    9. Ruiyuan Dong & Xiaowei Zhou, 2023. "Analysis of the Nonlinear and Spatial Spillover Effects of the Digital Economy on Carbon Emissions in the Yellow River Basin," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    10. Liang Liu & Yuhan Zhang & Xiujuan Gong & Mengyue Li & Xue Li & Donglin Ren & Pan Jiang, 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    11. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    12. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    13. Jiachao Peng & Hanfei Chen & Lei Jia & Shuke Fu & Jiali Tian, 2023. "Impact of Digital Industrialization on the Energy Industry Supply Chain: Evidence from the Natural Gas Industry in China," Energies, MDPI, vol. 16(4), pages 1-32, February.
    14. Yating Zeng & Xinyue Xu & Yuyao Zhao & Bin Li, 2023. "Impact of Digital Economy on the Upgrading of Energy Consumption Structure: Evidence from Mainland China," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    15. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    16. Wei Zhang & Hao Zhou & Jie Chen & Zifu Fan, 2022. "An Empirical Analysis of the Impact of Digital Economy on Manufacturing Green and Low-Carbon Transformation under the Dual-Carbon Background in China," IJERPH, MDPI, vol. 19(20), pages 1-22, October.
    17. Shuming Ren & Lianqing Li & Yueqi Han & Yu Hao & Haitao Wu, 2022. "The emerging driving force of inclusive green growth: Does digital economy agglomeration work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1656-1678, May.
    18. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    19. Pei Zhang & Peiran Chen & Fan Xiao & Yong Sun & Shuyan Ma & Ziwei Zhao, 2022. "The Impact of Information Infrastructure on Air Pollution: Empirical Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    20. Guo, Bingnan & Wang, Yu & Zhang, Hao & Liang, Chunyan & Feng, Yu & Hu, Feng, 2023. "Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities," Economic Modelling, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11814-:d:919062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.