IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i1p484-d716367.html
   My bibliography  Save this article

Does Environmental Regulation Promote Industrial Green Technology Progress? Empirical Evidence from China with a Heterogeneity Analysis

Author

Listed:
  • Yanli Ji

    (School of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, China)

  • Jie Xue

    (School of Economics, Hangzhou Dianzi University, Hangzhou 310018, China)

  • Kaiyang Zhong

    (School of Economic Information Engineering, Southwestern University of Finance and Economics, Chengdu 611130, China)

Abstract

The complex relationship between environmental regulation and green technology progress has always been a hot topic of research, especially in developing countries, where the impact of environmental regulation is important. Current research is mainly concerned with the impact of the single environmental regulation on technological progress and lacks study on the diversity of environmental regulations. The main purpose of this paper is to examine the heterogeneity of the effects of different types of environmental regulation on industrial green technology progress. As China’s scale of economy and pollution emissions are both large, and the government has also made great efforts in environmental regulation, this paper takes China as the example for analyses. We first use the EBM-GML method to measure the industrial green technology progress of 30 provinces in China from 2000 to 2018, and then apply the panel econometric model and threshold model to empirically investigate the influence of 3 types of environmental regulation. The results show that, first, the impacts of environmental regulation on industrial green technology progress are significantly different; specifically, command-based regulation has no direct significant impact, and autonomous regulation has played a positive role, and market-based regulation’s quadratic curve effect is significant, in which the cost-based and investment-based tool presents an inverted U-sharped and U-sharped, respectively. Second, there may be a weak alternative interaction among different types of environmental regulation. Third, a market-based regulatory tool has a threshold effect; with the upgrading of environmental regulation compliance, the effect of a cost-based tool is characterized by “promotion inhibition”, and that of an investment-based tool is “inhibition promotion”. Finally, the results of regional analysis are basically consistent with those of the national analysis. Based on the study, policy enlightenment is put forward to improve regional industrial green technology progress from the perspective of environmental regulation. This paper can provide a useful analytical framework for studying the relationship between environmental regulation and technological progress in a country, especially in developing countries.

Suggested Citation

  • Yanli Ji & Jie Xue & Kaiyang Zhong, 2022. "Does Environmental Regulation Promote Industrial Green Technology Progress? Empirical Evidence from China with a Heterogeneity Analysis," IJERPH, MDPI, vol. 19(1), pages 1-23, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:1:p:484-:d:716367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/1/484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/1/484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Lanoie & Michel Patry & Richard Lajeunesse, 2008. "Environmental regulation and productivity: testing the porter hypothesis," Journal of Productivity Analysis, Springer, vol. 30(2), pages 121-128, October.
    2. Andrei Shleifer & Florencio Lopez-de-Silanes & Rafael La Porta, 2008. "The Economic Consequences of Legal Origins," Journal of Economic Literature, American Economic Association, vol. 46(2), pages 285-332, June.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Berman, Eli & Bui, Linda T. M., 2001. "Environmental regulation and labor demand: evidence from the South Coast Air Basin," Journal of Public Economics, Elsevier, vol. 79(2), pages 265-295, February.
    5. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    6. R. De Santis & C. Jona Lasinio, 2016. "Environmental Policies, Innovation and Productivity in the EU," Global Economy Journal (GEJ), World Scientific Publishing Co. Pte. Ltd., vol. 16(4), pages 615-635, December.
    7. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    8. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    9. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    10. De Xia & Wenhua Chen & Qinglu Gao & Rui Zhang & Yundong Zhang, 2021. "Research on Enterprises’ Intention to Adopt Green Technology Imposed by Environmental Regulations with Perspective of State Ownership," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    11. Kaiyang Zhong & Chenglin Li & Qing Wang, 2021. "Evaluation of Bank Innovation Efficiency with Data Envelopment Analysis: From the Perspective of Uncovering the Black Box between Input and Output," Mathematics, MDPI, vol. 9(24), pages 1-18, December.
    12. James A. Swaney, 1992. "Market versus Command and Control Environmental Policies," Journal of Economic Issues, Taylor & Francis Journals, vol. 26(2), pages 623-633, June.
    13. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    14. Gray, Wayne B, 1987. "The Cost of Regulation: OSHA, EPA and the Productivity Slowdown," American Economic Review, American Economic Association, vol. 77(5), pages 998-1006, December.
    15. Xinfei Li & Chang Xu & Baodong Cheng & Jingyang Duan & Yueming Li, 2021. "Does Environmental Regulation Improve the Green Total Factor Productivity of Chinese Cities? A Threshold Effect Analysis Based on the Economic Development Level," IJERPH, MDPI, vol. 18(9), pages 1-21, April.
    16. Bu, Maoliang & Qiao, Zhenzi & Liu, Beibei, 2020. "Voluntary environmental regulation and firm innovation in China," Economic Modelling, Elsevier, vol. 89(C), pages 10-18.
    17. Frondel, Manuel & Horbach, Jens & Rennings, Klaus, 2008. "What triggers environmental management and innovation? Empirical evidence for Germany," Ecological Economics, Elsevier, vol. 66(1), pages 153-160, May.
    18. Krysiak, Frank C., 2011. "Environmental regulation, technological diversity, and the dynamics of technological change," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 528-544, April.
    19. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    20. Adam B. Jaffe et al., 1995. "Environmental Regulation and the Competitiveness of U.S. Manufacturing: What Does the Evidence Tell Us?," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 132-163, March.
    21. C. Lovell, 2003. "The Decomposition of Malmquist Productivity Indexes," Journal of Productivity Analysis, Springer, vol. 20(3), pages 437-458, November.
    22. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    23. Pargal, Sheoli & Hettige, Hemamala & Singh, Manjula & Wheeler, David, 1997. "Formal and informal regulation of industrial pollution : comparative evidence from Indonesia and the United States," Policy Research Working Paper Series 1797, The World Bank.
    24. Fischer, Carolyn & Parry, Ian W. H. & Pizer, William A., 2003. "Instrument choice for environmental protection when technological innovation is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 523-545, May.
    25. Ebru Alpay & Joe Kerkvliet & Steven Buccola, 2002. "Productivity Growth and Environmental Regulation in Mexican and U.S. Food Manufacturing," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 887-901.
    26. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    27. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    28. Pargal, Sheoli, et al, 1997. "Formal and Informal Regulation of Industrial Pollution: Comparative Evidence from Indonesia and the United States," The World Bank Economic Review, World Bank, vol. 11(3), pages 433-450, September.
    29. Barbera, Anthony J. & McConnell, Virginia D., 1990. "The impact of environmental regulations on industry productivity: Direct and indirect effects," Journal of Environmental Economics and Management, Elsevier, vol. 18(1), pages 50-65, January.
    30. Fernanda Duarte, 2010. "Working with Corporate Social Responsibility in Brazilian Companies: The Role of Managers’ Values in the Maintenance of CSR Cultures," Journal of Business Ethics, Springer, vol. 96(3), pages 355-368, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanli Ji & Jie Xue, 2022. "Decoupling Effect of County Carbon Emissions and Economic Growth in China: Empirical Evidence from Jiangsu Province," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    2. Guoqun Ma & Minjuan Li & Yuxi Luo & Tuanbiao Jiang, 2023. "Agri-Ecological Policy, Human Capital and Agricultural Green Technology Progress," Agriculture, MDPI, vol. 13(5), pages 1-14, April.
    3. Yuxin Fang & Hongjun Cao, 2022. "Environmental Decentralization, Heterogeneous Environmental Regulation, and Green Total Factor Productivity—Evidence from China," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    4. Mei Feng & Chu Chen & Jia Liu & Wei Jia, 2022. "Does Central Environmental Protection Inspector Improve Corporate Social Responsibility? Evidence from Chinese Listed Companies," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    5. Yushi Zhang & Tianhang Jiang & Jun Sun & Zitian Fu & Yanfeng Yu, 2022. "Sustainable Development of Urbanization: From the Perspective of Social Security and Social Attitude for Migration," Sustainability, MDPI, vol. 14(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu Kedong & Lu Yueyu & Yu Ziyan & Kuai Peng & Zhang Shu’an, 2021. "Influences of environmental regulations on skill premium: mediating effect of industrial structure optimization," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 245-273, April.
    2. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    3. Nusrate Aziz & Belayet Hossain & Laura Lamb, 2022. "Does green policy pay dividends?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 147-172, April.
    4. Dietrich Earnhart & Dylan G. Rassier, 2016. "“Effective regulatory stringency” and firms’ profitability: the effects of effluent limits and government monitoring," Journal of Regulatory Economics, Springer, vol. 50(2), pages 111-145, October.
    5. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    6. Erik Hille & Patrick Möbius, 2019. "Environmental Policy, Innovation, and Productivity Growth: Controlling the Effects of Regulation and Endogeneity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1315-1355, August.
    7. Ren, Shenggang & Yang, Xuanyu & Hu, Yucai & Chevallier, Julien, 2022. "Emission trading, induced innovation and firm performance," Energy Economics, Elsevier, vol. 112(C).
    8. He, Yiqing & Ding, Xin & Yang, Chuchu, 2021. "Do environmental regulations and financial constraints stimulate corporate technological innovation? Evidence from China," Journal of Asian Economics, Elsevier, vol. 72(C).
    9. Pedro Naso & Yi Huang Author Name: Tim Swanson, 2017. "The Porter Hypothesis Goes to China: Spatial Development, Environmental Regulation and Productivity," CIES Research Paper series 53-2017, Centre for International Environmental Studies, The Graduate Institute.
    10. Siedschlag, Iulia & Yan, Weijie, 2023. "Do green investments improve firm performance? Empirical evidence from Ireland," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    11. Wang, Yan & Shen, Neng, 2016. "Environmental regulation and environmental productivity: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 758-766.
    12. Thanh Tam Nguyen-Huu & Khac Minh Nguyen & Quoc Tran-Nam, 2022. "The role of environmental practices and innovation in total factor productivity convergence -Evidence from small-and medium-sized manufacturing enterprises in Vietnam," Post-Print hal-04248191, HAL.
    13. Zhang, Yijun & Song, Yi, 2022. "Tax rebates, technological innovation and sustainable development: Evidence from Chinese micro-level data," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    14. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    15. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    16. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    17. Jin, Chenfei & Tsai, Fu-Sheng & Gu, Qiuyang & Wu, Bao, 2022. "Does the porter hypothesis work well in the emission trading schema pilot? Exploring moderating effects of institutional settings," Research in International Business and Finance, Elsevier, vol. 62(C).
    18. Dylan Rassier & Dietrich Earnhart, 2010. "Does the Porter Hypothesis Explain Expected Future Financial Performance? The Effect of Clean Water Regulation on Chemical Manufacturing Firms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(3), pages 353-377, March.
    19. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    20. Guo, Shu & Zhang, ZhongXiang, 2023. "Green credit policy and total factor productivity: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:1:p:484-:d:716367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.