IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i1p138-156d15764.html
   My bibliography  Save this article

Standardization Work for BEV and HEV Applications: Critical Appraisal of Recent Traction Battery Documents

Author

Listed:
  • Noshin Omar

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium
    Erasmus University College, Nijverheidskaai 170, Brussel 1070, Belgium)

  • Mohamed Daowd

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Omar Hegazy

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Grietus Mulder

    (VITO, Unit of Energy Technology, Boeretang 200, Mol 2400, Belgium)

  • Jean-Marc Timmermans

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Thierry Coosemans

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

  • Peter Van den Bossche

    (Erasmus University College, Nijverheidskaai 170, Brussel 1070, Belgium)

  • Joeri Van Mierlo

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussel 1050, Belgium)

Abstract

The increased activity in the field of Battery Electric Vehicles (BEVs) and Hybrid Electric Vehicles (HEVs) have led to an increase in standardization work, performed by both world-wide organizations like the IEC or the ISO, as by regional and national bodies such as CEN, CENELEC, SAE or JEVA. The issues of these standards cover several topics: safety, performance and operational/dimension issues. This paper reports a brief overview of current standardization activities of lithium batteries based on IEC 62660-1/2 and ISO 12405-1/2. Furthermore, in this paper, a series of innovative test procedures for lithium-ion batteries are presented. Thanks to these tests, the general characteristics of a battery such as charge and discharge capabilities, power performances and life cycle can be determined. Then, a new approach for extracting the life cycle of a battery in function of depth of discharge has been developed.

Suggested Citation

  • Noshin Omar & Mohamed Daowd & Omar Hegazy & Grietus Mulder & Jean-Marc Timmermans & Thierry Coosemans & Peter Van den Bossche & Joeri Van Mierlo, 2012. "Standardization Work for BEV and HEV Applications: Critical Appraisal of Recent Traction Battery Documents," Energies, MDPI, vol. 5(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:1:p:138-156:d:15764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/1/138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/1/138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burke, Andrew & Miller, Marshall, 2009. "Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles," Institute of Transportation Studies, Working Paper Series qt3mc7g3vt, Institute of Transportation Studies, UC Davis.
    2. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2008. "Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008," Institute of Transportation Studies, Working Paper Series qt1bp83874, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    2. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    3. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.
    4. José-Fernán Martínez & Jesús Rodríguez-Molina & Pedro Castillejo & Rubén De Diego, 2013. "Middleware Architectures for the Smart Grid: Survey and Challenges in the Foreseeable Future," Energies, MDPI, vol. 6(7), pages 1-29, July.
    5. Mohammed Al-Saadi & Josu Olmos & Andoni Saez-de-Ibarra & Joeri Van Mierlo & Maitane Berecibar, 2022. "Fast Charging Impact on the Lithium-Ion Batteries’ Lifetime and Cost-Effective Battery Sizing in Heavy-Duty Electric Vehicles Applications," Energies, MDPI, vol. 15(4), pages 1-23, February.
    6. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    7. Mohamed Daowd & Mailier Antoine & Noshin Omar & Philippe Lataire & Peter Van Den Bossche & Joeri Van Mierlo, 2014. "Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery," Energies, MDPI, vol. 7(5), pages 1-41, April.
    8. James Marco & Neelu Kumari & W. Dhammika Widanage & Peter Jones, 2015. "A Cell-in-the-Loop Approach to Systems Modelling and Simulation of Energy Storage Systems," Energies, MDPI, vol. 8(8), pages 1-19, August.
    9. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    10. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    11. Shixin Song & Feng Xiao & Silun Peng & Chuanxue Song & Yulong Shao, 2018. "A High-Efficiency Bidirectional Active Balance for Electric Vehicle Battery Packs Based on Model Predictive Control," Energies, MDPI, vol. 11(11), pages 1-24, November.
    12. Nima Lotfi & Poria Fajri & Samuel Novosad & Jack Savage & Robert G. Landers & Mehdi Ferdowsi, 2013. "Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems," Energies, MDPI, vol. 6(10), pages 1-28, October.
    13. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    14. Noshin Omar & Mohamed Daowd & Peter van den Bossche & Omar Hegazy & Jelle Smekens & Thierry Coosemans & Joeri van Mierlo, 2012. "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics," Energies, MDPI, vol. 5(8), pages 1-37, August.
    15. Wen-Poo Yuan & Se-Min Jeong & Wu-Yang Sean & Yi-Hsien Chiang, 2020. "Development of Enhancing Battery Management for Reusing Automotive Lithium-Ion Battery," Energies, MDPI, vol. 13(13), pages 1-15, June.
    16. Firouz, Y. & Relan, R. & Timmermans, J.M. & Omar, N. & Van den Bossche, P. & Van Mierlo, J., 2016. "Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: Nonlinear characterization and non-parametric modeling," Energy, Elsevier, vol. 106(C), pages 602-617.
    17. Mohamed Abdel-Monem & Omar Hegazy & Noshin Omar & Khiem Trad & Sven De Breucker & Peter Van Den Bossche & Joeri Van Mierlo, 2016. "Design and Analysis of Generic Energy Management Strategy for Controlling Second-Life Battery Systems in Stationary Applications," Energies, MDPI, vol. 9(11), pages 1-25, October.
    18. Giuseppe Fabri & Antonio Ometto & Marco Villani & Gino D’Ovidio, 2022. "A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application," Sustainability, MDPI, vol. 14(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firouz, Y. & Omar, N. & Timmermans, J.-M. & Van den Bossche, P. & Van Mierlo, J., 2015. "Lithium-ion capacitor – Characterization and development of new electrical model," Energy, Elsevier, vol. 83(C), pages 597-613.
    2. Noshin Omar & Mohamed Daowd & Peter van den Bossche & Omar Hegazy & Jelle Smekens & Thierry Coosemans & Joeri van Mierlo, 2012. "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics," Energies, MDPI, vol. 5(8), pages 1-37, August.
    3. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    4. Burke, Andrew, 2009. "Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt2xf263qp, Institute of Transportation Studies, UC Davis.
    5. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    6. Kurani, Kenneth S & Axsen, Jonn & Caperello, Nicolette & Davies, Jamie & Stillwater, Tai, 2009. "Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program," Institute of Transportation Studies, Working Paper Series qt9361r9h7, Institute of Transportation Studies, UC Davis.
    7. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    8. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    9. Burke, Andy & Zhao, Hengbing, 2010. "Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles," Institute of Transportation Studies, Working Paper Series qt4wb3g744, Institute of Transportation Studies, UC Davis.
    10. Eapen, Deepa Elizabeth & Suresh, Resmi & Patil, Sairaj & Rengaswamy, Raghunathan, 2021. "A systems engineering perspective on electrochemical energy technologies and a framework for application driven choice of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    12. Zhao, Hengbing & Burke, Andrew, 2015. "Modelling and Analysis of Plug-in Series-Parallel Hybrid Medium-Duty Vehicles," Institute of Transportation Studies, Working Paper Series qt37z105pr, Institute of Transportation Studies, UC Davis.
    13. Arslan, Okan & Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Minimum cost path problem for Plug-in Hybrid Electric Vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 123-141.
    14. Burke, Andrew & Zhao, Hengbing & Van Gelder, Eric, 2009. "Simulated Performance of Alternative Hybrid-Electric Powertrains in Vehicles on Various Driving Cycles," Institute of Transportation Studies, Working Paper Series qt7nt461g1, Institute of Transportation Studies, UC Davis.
    15. Hassan, Masood Ul & Saha, Sajeeb & Haque, Md Enamul, 2021. "PVAnalytX: A MATLAB toolkit for techno-economic analysis and performance evaluation of rooftop PV systems," Energy, Elsevier, vol. 223(C).
    16. Kuo-Hsin Tseng & Jin-Wei Liang & Wunching Chang & Shyh-Chin Huang, 2015. "Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 8(4), pages 1-19, April.
    17. Sina Shojaei & Andrew McGordon & Simon Robinson & James Marco, 2017. "Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling," Energies, MDPI, vol. 10(12), pages 1-28, December.
    18. Azadfar, Elham & Sreeram, Victor & Harries, David, 2015. "The investigation of the major factors influencing plug-in electric vehicle driving patterns and charging behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1065-1076.
    19. Burke, Andrew & Miller, Marshall, 2009. "Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles," Institute of Transportation Studies, Working Paper Series qt3mc7g3vt, Institute of Transportation Studies, UC Davis.
    20. Axsen, Jonn, 2010. "Interpersonal Influence within Car Buyers’ Social Networks: Observing Consumer Assessment of Plug-in Hybrid Electric Vehicles (PHEVs) and the Spread of Pro-Societal Values," Institute of Transportation Studies, Working Paper Series qt8p32d18k, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:1:p:138-156:d:15764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.