Advanced Search
MyIDEAS: Login to save this paper or follow this series

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008


Author Info

  • Axsen, Jonn
  • Burke, Andy
  • Kurani, Kenneth S
Registered author(s):


    This report discusses the development of advanced batteries for plug-in hybrid electric vehicle (PHEV) applications. We discuss the basic design concepts of PHEVs, compare three sets of influential technical goals, and explain the inherent trade-offs in PHEV battery design. We then discuss the current state of several battery chemistries, including nickel-metal hydride (NiMH) and lithium-ion (Li-Ion), comparing their abilities to meet PHEV goals, and potential trajectories for further improvement. Four important conclusions are highlighted. First, PHEV battery “goals†vary according to differing assumptions of PHEV design, performance, use patterns and consumer demand. Second, battery development is constrained by inherent tradeoffs among five main battery attributes: power, energy, longevity, safety and cost. Third, Li-Ion battery designs are better suited to meet the demands of more aggressive PHEV goals than the NiMH batteries currently used for HEVs. Fourth, the flexible nature of Li-Ion technology, as well as concerns over safety, has prompted several alternate paths of continued technological development. Due to the differences among these development paths, the attributes of one type of Li-Ion battery cannot necessarily be generalized to other types. This paper is not intended to be a definitive analysis of technologies; instead, it is more of a primer for battery non-experts, providing the perspective and tools to help understand and critically review research on PHEV batteries.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:;origin=repeccitec
    Download Restriction: no

    Bibliographic Info

    Paper provided by Institute of Transportation Studies, UC Davis in its series Institute of Transportation Studies, Working Paper Series with number qt1bp83874.

    as in new window
    Date of creation: 01 May 2008
    Date of revision:
    Handle: RePEc:cdl:itsdav:qt1bp83874

    Contact details of provider:
    Postal: 2028 Academic Surge, One Shields Avenue, Davis, CA 95616
    Phone: (530) 752-6548
    Web page:
    More information through EDIRC

    Related research

    Keywords: UCD-ITS-RR-08-14; Engineering;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Axsen, Jonn & Kurani, Kenneth S. & Burke, Andrew, 2010. "Are batteries ready for plug-in hybrid buyers?," Transport Policy, Elsevier, vol. 17(3), pages 173-182, May.
    2. Noshin Omar & Mohamed Daowd & Omar Hegazy & Grietus Mulder & Jean-Marc Timmermans & Thierry Coosemans & Peter Van den Bossche & Joeri Van Mierlo, 2012. "Standardization Work for BEV and HEV Applications: Critical Appraisal of Recent Traction Battery Documents," Energies, MDPI, Open Access Journal, vol. 5(1), pages 138-156, January.
    3. Burke, Andrew, 2009. "Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt2xf263qp, Institute of Transportation Studies, UC Davis.
    4. Momber, Ilan & Dallinger, David & Beer, Sebastian & Gomez, Tomás & Wietschel, Martin, 2011. "Optimizing plug-in electric vehicle charging in interaction with a small office building," Working Papers "Sustainability and Innovation" S9/2011, Fraunhofer Institute for Systems and Innovation Research (ISI).
    5. Burke, Andrew & Miller, Marshall, 2009. "Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles," Institute of Transportation Studies, Working Paper Series qt3mc7g3vt, Institute of Transportation Studies, UC Davis.
    6. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    7. Axsen, Jonn & Burke, Andy & Kurani, Kenneth S, 2010. "Are Batteries Ready for Plug-in Hybrid Buyers?," Institute of Transportation Studies, Working Paper Series qt7vh184rw, Institute of Transportation Studies, UC Davis.
    8. Burke, Andy & Miller, Marshall, 2009. "Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects," Institute of Transportation Studies, Working Paper Series qt7r75s6mx, Institute of Transportation Studies, UC Davis.
    9. Israel García & Luis Javier Miguel, 2012. "Is the Electric Vehicle an Attractive Option for Customers?," Energies, MDPI, Open Access Journal, vol. 5(1), pages 71-91, January.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt1bp83874. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.