IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6044-d893342.html
   My bibliography  Save this article

Influence of the Industry’s Output on Electricity Prices: Comparison of the Nord Pool and HUPX Markets

Author

Listed:
  • Jerzy Rembeza

    (Faculty of Economic Science, Koszalin University of Technology, Kwiatkowskiego 6e, 75-343 Koszalin, Poland)

  • Grzegorz Przekota

    (Faculty of Economic Science, Koszalin University of Technology, Kwiatkowskiego 6e, 75-343 Koszalin, Poland)

Abstract

Electricity markets are characterised by high sensitivity to variations in supply and demand conditions. However, they also exhibit a number of specific characteristics, including large daily, weekly, and seasonal price fluctuations. The aim of this article is to assess the impact of fluctuations in the industry’s output on wholesale electricity prices. Results were compared for the Nord Pool markets, with a high share of renewable energy supply, and the HUPX markets, where fossil fuel and/or nuclear energy supply dominates. The results obtained generally indicate the positive impact of changes in the industry’s output on wholesale electricity prices. This impact was stronger in the HUPX markets and for periods in daily and weekly cycles with higher energy demands. The results indicate that the sensitivity of electricity prices to fluctuations in the industry’s output is lower in markets with a higher share of renewable energy, especially for periods with higher energy demands.

Suggested Citation

  • Jerzy Rembeza & Grzegorz Przekota, 2022. "Influence of the Industry’s Output on Electricity Prices: Comparison of the Nord Pool and HUPX Markets," Energies, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6044-:d:893342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huisman, Ronald & Huurman, Christian & Mahieu, Ronald, 2007. "Hourly electricity prices in day-ahead markets," Energy Economics, Elsevier, vol. 29(2), pages 240-248, March.
    2. James McCulloch and Katja Ignatieva, 2020. "Intra-day Electricity Demand and Temperature," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 161-182.
    3. Thoma, Mark, 2004. "Electrical energy usage over the business cycle," Energy Economics, Elsevier, vol. 26(3), pages 463-485, May.
    4. Ewing, Bradley T. & Sari, Ramazan & Soytas, Ugur, 2007. "Disaggregate energy consumption and industrial output in the United States," Energy Policy, Elsevier, vol. 35(2), pages 1274-1281, February.
    5. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    6. Knut Anton Mork & Oystein Olsen & Hans Terje Mysen, 1994. "Macroeconomic Responses to Oil Price Increases and Decreases in Seven OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 19-36.
    7. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    8. Hunt, Benjamin & Isard, Peter & Laxton, Douglas, 2002. "The Macroeconomic Effects of Higher Oil Prices," National Institute Economic Review, National Institute of Economic and Social Research, vol. 179, pages 87-103, January.
    9. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    10. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    11. Kiseok Lee & Shawn Ni & Ronald A. Ratti, 1995. "Oil Shocks and the Macroeconomy: The Role of Price Variability," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 39-56.
    12. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    13. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    14. repec:qut:auncer:2012_5 is not listed on IDEAS
    15. Lee, Chien-Chiang, 2006. "The causality relationship between energy consumption and GDP in G-11 countries revisited," Energy Policy, Elsevier, vol. 34(9), pages 1086-1093, June.
    16. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    17. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    18. Henri Safa, 2017. "The Impact of Energy on Global Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 287-295.
    19. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    20. Narayan, Paresh Kumar & Smyth, Russell, 2005. "Electricity consumption, employment and real income in Australia evidence from multivariate Granger causality tests," Energy Policy, Elsevier, vol. 33(9), pages 1109-1116, June.
    21. Stern, David I., 2000. "A multivariate cointegration analysis of the role of energy in the US macroeconomy," Energy Economics, Elsevier, vol. 22(2), pages 267-283, April.
    22. Zachmann, Georg, 2008. "Electricity wholesale market prices in Europe: Convergence?," Energy Economics, Elsevier, vol. 30(4), pages 1659-1671, July.
    23. Wu, X.F. & Chen, G.Q., 2017. "Global primary energy use associated with production, consumption and international trade," Energy Policy, Elsevier, vol. 111(C), pages 85-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Przekota, 2023. "Do Household Electricity Prices in European Union Countries Depend on the Energy Mix?," Energies, MDPI, vol. 16(21), pages 1-15, October.
    2. Grzegorz Przekota & Anna Szczepańska-Przekota, 2022. "Pro-Inflationary Impact of the Oil Market—A Study for Poland," Energies, MDPI, vol. 15(9), pages 1-19, April.
    3. Amiri, Arshia & Zibaei, Mansour, 2012. "Granger causality between energy use and economic growth in France with using geostatistical models," MPRA Paper 36357, University Library of Munich, Germany.
    4. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    5. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    6. Payne, James E., 2009. "On the Dynamics of Energy Consumption and Employment in Illinois," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 39(2), pages 1-5.
    7. Murad, Wahid & Alam, Md. Mahmudul & Noman, Abu Hanifa Md. & OZTURK, Ilhan, 2019. "Dynamics of technological innovation, energy consumption, energy price and economic growth in Denmark," OSF Preprints 9tkj8, Center for Open Science.
    8. van de Ven, Dirk Jan & Fouquet, Roger, 2017. "Historical energy price shocks and their changing effects on the economy," Energy Economics, Elsevier, vol. 62(C), pages 204-216.
    9. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    10. Gross, Christian, 2012. "Explaining the (non-) causality between energy and economic growth in the U.S.—A multivariate sectoral analysis," Energy Economics, Elsevier, vol. 34(2), pages 489-499.
    11. Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
    12. Ewing, Bradley T. & Sari, Ramazan & Soytas, Ugur, 2007. "Disaggregate energy consumption and industrial output in the United States," Energy Policy, Elsevier, vol. 35(2), pages 1274-1281, February.
    13. Sari, Ramazan & Ewing, Bradley T. & Soytas, Ugur, 2008. "The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach," Energy Economics, Elsevier, vol. 30(5), pages 2302-2313, September.
    14. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    15. Zachariadis, Theodoros, 2007. "Exploring the relationship between energy use and economic growth with bivariate models: New evidence from G-7 countries," Energy Economics, Elsevier, vol. 29(6), pages 1233-1253, November.
    16. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    17. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    18. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    19. Payne, James E., 2009. "On the dynamics of energy consumption and output in the US," Applied Energy, Elsevier, vol. 86(4), pages 575-577, April.
    20. Michail I. Seitaridis & Nikolaos S. Thomaidis & Pandelis N. Biskas, 2021. "Fundamental Responsiveness in European Electricity Prices," Energies, MDPI, vol. 14(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6044-:d:893342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.