IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4885-d854838.html
   My bibliography  Save this article

Forecasting Crude Oil Consumption in Poland Based on LSTM Recurrent Neural Network

Author

Listed:
  • Anna Manowska

    (Department of Electrical Engineering and Automation in Industry, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Anna Bluszcz

    (Department of Safety Engineering, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

Primary fuels, i.e., crude oil, natural gas, and power coal, dominate the total global demand for primary energy. Among them, crude oil plays a particularly important role due to the universality of applications and the practical lack of substitutes in transport. Crude oil is also one of the main sources of primary energy in Poland and accounts for around 30% of the energy consumed. Poland covers only 3% of its needs from domestic deposits. The rest is imported from Russia, Saudi Arabia, Nigeria, Great Britain, Kazakhstan, and Norway. Due to such a high import of raw material, Poland must anticipate future demand. On the one hand, this article aims to analyze the current (2020) and future (2040) crude oil consumption on the Polish market. The study analyzes the geopolitical and economic foundations of the functioning of the energy raw-materials market, the crude oil supply, the structure of Poland’s energy mix, and assumptions about the energy policy until 2040. On the other hand, conclusions from the research were used to build a model of crude oil consumption for the internal market. It has been also shown that the consumption of crude oil on the Polish market is a nonlinear phenomenon with a small set of statistical data, which makes it difficult to build an accurate model. This paper proposes a new model based on artificial neural networks that includes long-term memory (LSTM). The accuracy of the constructed model was assessed using the MSE, Theil, and Janus coefficients. The results show that LSTM models can be used to forecast crude oil consumption, and they cope with the nonstationary and nonlinear time series. Many important contemporary problems posed in the field of energy economy are also discussed, and it is proposed to solve them with the use of modern machine-learning tools.

Suggested Citation

  • Anna Manowska & Anna Bluszcz, 2022. "Forecasting Crude Oil Consumption in Poland Based on LSTM Recurrent Neural Network," Energies, MDPI, vol. 15(13), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4885-:d:854838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jana Kotlebova & Peter Arendas & Bozena Chovancova, 2020. "Government expenditures in the support of technological innovations and impact on stock market and real economy: the empirical evidence from the US and Germany," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 15(4), pages 717-734, December.
    2. Fragkos, Panagiotis & Paroussos, Leonidas, 2018. "Employment creation in EU related to renewables expansion," Applied Energy, Elsevier, vol. 230(C), pages 935-945.
    3. Alejandro J. del Real & Fernando Dorado & Jaime Durán, 2020. "Energy Demand Forecasting Using Deep Learning: Applications for the French Grid," Energies, MDPI, vol. 13(9), pages 1-15, May.
    4. Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
    5. Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
    6. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    7. Marlena Piekut, 2020. "Patterns of Energy Consumption in Polish One-Person Households," Energies, MDPI, vol. 13(21), pages 1-31, October.
    8. Asif Reza Anik & Sanzidur Rahman, 2021. "Commercial Energy Demand Forecasting in Bangladesh," Energies, MDPI, vol. 14(19), pages 1-22, October.
    9. Michał Bernard Pietrzak & Bartłomiej Igliński & Wojciech Kujawski & Paweł Iwański, 2021. "Energy Transition in Poland—Assessment of the Renewable Energy Sector," Energies, MDPI, vol. 14(8), pages 1-23, April.
    10. Marta Sukiennik & Barbara Kowal, 2022. "Analysis and Verification of Space for New Businesses in Raw Material Market—A Case Study of Poland," Energies, MDPI, vol. 15(9), pages 1-17, April.
    11. Ewa Rollnik-Sadowska & Edyta Dabrowska, 2018. "Cluster analysis of effectiveness of labour market policy in the European Union," Oeconomia Copernicana, Institute of Economic Research, vol. 9(1), pages 143-158, March.
    12. Anna Bluszcz, 2017. "European economies in terms of energy dependence," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1531-1548, July.
    13. Kamyk, Jarosław & Kot-Niewiadomska, Alicja & Galos, Krzysztof, 2021. "The criticality of crude oil for energy security: A case of Poland," Energy, Elsevier, vol. 220(C).
    14. Anna Bluszcz & Anna Manowska, 2021. "The Use of Hierarchical Agglomeration Methods in Assessing the Polish Energy Market," Energies, MDPI, vol. 14(13), pages 1-18, July.
    15. Viktor Prokop & Michaela Kotkova Striteska & Jan Stejskal, 2021. "Fostering Czech firms’ innovation performance through efficient cooperation," Oeconomia Copernicana, Institute of Economic Research, vol. 12(3), pages 671-700, September.
    16. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
    17. Rybak, Aurelia & Rybak, Aleksandra, 2016. "Possible strategies for hard coal mining in Poland as a result of production function analysis," Resources Policy, Elsevier, vol. 50(C), pages 27-33.
    18. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    19. Rob J. Hyndman & Andrey V. Kostenko, 2007. "Minimum Sample Size requirements for Seasonal Forecasting Models," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 6, pages 12-15, Spring.
    20. Rogers, J.C. & Simmons, E.A. & Convery, I. & Weatherall, A., 2008. "Public perceptions of opportunities for community-based renewable energy projects," Energy Policy, Elsevier, vol. 36(11), pages 4217-4226, November.
    21. Mu-Xing Lin & Hwa Meei Liou & Kuei Tien Chou, 2020. "National Energy Transition Framework toward SDG7 with Legal Reforms and Policy Bundles: The Case of Taiwan and Its Comparison with Japan," Energies, MDPI, vol. 13(6), pages 1-20, March.
    22. Sanya Carley & David M. Konisky, 2020. "The justice and equity implications of the clean energy transition," Nature Energy, Nature, vol. 5(8), pages 569-577, August.
    23. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    24. Strunz, Sebastian, 2014. "The German energy transition as a regime shift," Ecological Economics, Elsevier, vol. 100(C), pages 150-158.
    25. Manowska, Anna & Osadnik, Katarzyna Tobór & Wyganowska, Małgorzata, 2017. "Economic and social aspects of restructuring Polish coal mining: Focusing on Poland and the EU," Resources Policy, Elsevier, vol. 52(C), pages 192-200.
    26. Aleksandra Matuszewska-Janica & Dorota Witkowska, 2021. "Differences between determinants of men and women monthly wages across fourteen European Union states," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(3), pages 503-531, September.
    27. Jonek Kowalska, Izabela, 2015. "Challenges for long-term industry restructuring in the Upper Silesian Coal Basin: What has Polish coal mining achieved and failed from a twenty-year perspective?," Resources Policy, Elsevier, vol. 44(C), pages 135-149.
    28. Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
    29. Tomáš Meluzín & Marek Zinecker & Adam P. Balcerzak & Michał B. Pietrzak, 2018. "Why Do Companies Stay Private? Determinants for IPO Candidates to Consider in Poland and the Czech Republic," Eastern European Economics, Taylor & Francis Journals, vol. 56(6), pages 471-503, November.
    30. Lucia Svabova & Eva Nahalkova Tesarova & Marek Durica & Lenka Strakova, 2021. "Evaluation of the impacts of the COVID-19 pandemic on the development of the unemployment rate in Slovakia: counterfactual before-after comparison," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(2), pages 261-284, June.
    31. Karakurt, Izzet, 2021. "Modelling and forecasting the oil consumptions of the BRICS-T countries," Energy, Elsevier, vol. 220(C).
    32. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bei Zhang & Xiaoqing Ai & Xingming Fang & Shi Chen, 2022. "The Transmission Mechanisms and Impacts of Oil Price Fluctuations: Evidence from DSGE Model," Energies, MDPI, vol. 15(16), pages 1-20, August.
    2. Michał Bernard Pietrzak & Marta Kuc-Czarnecka, 2022. "Transformation of Energy Markets: Description, Modeling of Functioning Mechanisms and Determining Development Trends," Energies, MDPI, vol. 15(15), pages 1-6, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Bartłomiej Igliński & Michał Bernard Pietrzak & Urszula Kiełkowska & Mateusz Skrzatek & Artur Gajdos & Anas Zyadin & Karthikeyan Natarajan, 2022. "How to Meet the Green Deal Objectives—Is It Possible to Obtain 100% RES at the Regional Level in the EU?," Energies, MDPI, vol. 15(6), pages 1-24, March.
    3. Bartłomiej Igliński & Michał Bernard Pietrzak, 2022. "Renewable and Sustainable Energy: Current State and Prospects," Energies, MDPI, vol. 15(13), pages 1-7, June.
    4. Anna Manowska & Andrzej Nowrot, 2022. "Solar Farms as the Only Power Source for the Entire Country," Energies, MDPI, vol. 15(14), pages 1-15, July.
    5. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    6. Anna Bluszcz & Anna Manowska, 2021. "The Use of Hierarchical Agglomeration Methods in Assessing the Polish Energy Market," Energies, MDPI, vol. 14(13), pages 1-18, July.
    7. Bartłomiej Iglinski & Karol Flisikowski & Michał Bernard Pietrzak & Urszula Kiełkowska & Mateusz Skrzatek & Anas Zyadin & Karthikeyan Natarajan, 2021. "Renewable Energy in the Pomerania Voivodeship—Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation," Energies, MDPI, vol. 14(24), pages 1-27, December.
    8. Elżbieta Bukalska & Marek Zinecker & Michał Bernard Pietrzak, 2021. "Socioemotional Wealth (SEW) of Family Firms and CEO Behavioral Biases in the Implementation of Sustainable Development Goals (SDGs)," Energies, MDPI, vol. 14(21), pages 1-15, November.
    9. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    10. Marlena Piekut, 2021. "The Consumption of Renewable Energy Sources (RES) by the European Union Households between 2004 and 2019," Energies, MDPI, vol. 14(17), pages 1-31, September.
    11. Michał Bernard Pietrzak & Marta Kuc-Czarnecka, 2022. "Transformation of Energy Markets: Description, Modeling of Functioning Mechanisms and Determining Development Trends," Energies, MDPI, vol. 15(15), pages 1-6, July.
    12. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    13. repec:ipg:wpaper:2013-009 is not listed on IDEAS
    14. Anna Manowska & Andrzej Nowrot, 2019. "The Importance of Heat Emission Caused by Global Energy Production in Terms of Climate Impact," Energies, MDPI, vol. 12(16), pages 1-12, August.
    15. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    16. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    17. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    18. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    19. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
    20. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
    21. Robert Huterski & Agnieszka Huterska & Ewa Zdunek-Rosa & Grażyna Voss, 2021. "Evaluation of the Level of Electricity Generation from Renewable Energy Sources in European Union Countries," Energies, MDPI, vol. 14(23), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4885-:d:854838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.