IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3641-d816736.html
   My bibliography  Save this article

Source-Load Coordinated Low-Carbon Economic Dispatch of Electric-Gas Integrated Energy System Based on Carbon Emission Flow Theory

Author

Listed:
  • Jieran Feng

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Junpei Nan

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Chao Wang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Ke Sun

    (State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310063, China
    Zhejiang Huayun Electric Power Engineering Design Consulting Co., Ltd., Hangzhou 310014, China)

  • Xu Deng

    (The People’s Government of Guangzhou Municipality, Guangzhou 510032, China)

  • Hao Zhou

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

The development of emerging technologies has enhanced the demand response (DR) capability of conventional loads. To study the effect of DR on the reduction in carbon emissions in an integrated energy system (IES), a two-stage low-carbon economic dispatch model based on the carbon emission flow (CEF) theory was proposed in this study. In the first stage, the energy supply cost was taken as the objective function for economic dispatch, and the actual carbon emissions of each energy hub (EH) were calculated based on the CEF theory. In the second stage, a low-carbon DR optimization was performed with the objective function of the load-side carbon trading cost. Then, based on the modified IEEE 39-bus power system/Belgian 20-node natural gas system, MATLAB/Gurobi was used for the simulation analysis in three scenarios. The results showed that the proposed model could effectively promote the system to reduce the load peak-to-valley difference, enhance the ability to consume wind power, and reduce the carbon emissions and carbon trading cost. Furthermore, as the wind power penetration rate increased from 20% to 80%, the carbon reduction effect basically remained stable. Therefore, with the growth of renewable energy, the proposed model can still effectively reduce carbon emissions.

Suggested Citation

  • Jieran Feng & Junpei Nan & Chao Wang & Ke Sun & Xu Deng & Hao Zhou, 2022. "Source-Load Coordinated Low-Carbon Economic Dispatch of Electric-Gas Integrated Energy System Based on Carbon Emission Flow Theory," Energies, MDPI, vol. 15(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3641-:d:816736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3641/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3641/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Li, Fang & Zeng, Ming & Li, Jiapu & Wang, Xiaohai & Zhang, Fuwei, 2019. "Planning and operation method of the regional integrated energy system considering economy and environment," Energy, Elsevier, vol. 171(C), pages 731-750.
    2. Guo, Bowei & Weeks, Melvyn, 2022. "Dynamic tariffs, demand response, and regulation in retail electricity markets," Energy Economics, Elsevier, vol. 106(C).
    3. Yuan, Guanxiu & Gao, Yan & Ye, Bei, 2021. "Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response," Renewable Energy, Elsevier, vol. 179(C), pages 1424-1446.
    4. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Zhang, Zhihui & Jing, Rui & Lin, Jian & Wang, Xiaonan & van Dam, Koen H. & Wang, Meng & Meng, Chao & Xie, Shan & Zhao, Yingru, 2020. "Combining agent-based residential demand modeling with design optimization for integrated energy systems planning and operation," Applied Energy, Elsevier, vol. 263(C).
    6. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    7. Cristina Peñasco & Laura Díaz Anadón & Elena Verdolini, 2021. "Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments," Nature Climate Change, Nature, vol. 11(3), pages 257-265, March.
    8. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Ida Sognnaes & Ajay Gambhir & Dirk-Jan van de Ven & Alexandros Nikas & Annela Anger-Kraavi & Ha Bui & Lorenza Campagnolo & Elisa Delpiazzo & Haris Doukas & Sara Giarola & Neil Grant & Adam Hawkes & Al, 2021. "A multi-model analysis of long-term emissions and warming implications of current mitigation efforts," Nature Climate Change, Nature, vol. 11(12), pages 1055-1062, December.
    10. Frances C. Moore & Katherine Lacasse & Katharine J. Mach & Yoon Ah Shin & Louis J. Gross & Brian Beckage, 2022. "Determinants of emissions pathways in the coupled climate–social system," Nature, Nature, vol. 603(7899), pages 103-111, March.
    11. Yu, Biying & Sun, Feihu & Chen, Chen & Fu, Guanpeng & Hu, Lin, 2022. "Power demand response in the context of smart home application," Energy, Elsevier, vol. 240(C).
    12. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hangbo & You, Pengcheng & Shang, Ce, 2021. "Distributed planning of electricity and natural gas networks and energy hubs," Applied Energy, Elsevier, vol. 282(PA).
    2. Chen, Xi & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming & Yang, Ming & He, Suoying & Liang, Jun, 2020. "Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power," Energy, Elsevier, vol. 198(C).
    3. Junpei Nan & Jieran Feng & Xu Deng & Chao Wang & Ke Sun & Hao Zhou, 2022. "Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method," Energies, MDPI, vol. 15(15), pages 1-17, July.
    4. Dong, Haiyan & Fu, Yanbo & Jia, Qingquan & Zhang, Tie & Meng, Dequn, 2023. "Low carbon optimization of integrated energy microgrid based on life cycle analysis method and multi time scale energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 60-71.
    5. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    7. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    8. Conrado Borraz-Sánchez & Dag Haugland, 2013. "Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 524-541, October.
    9. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    10. Massol, O., 2011. "A cost function for the natural gas transmission industry: further considerations," Working Papers 1464, Department of Economics, City University London.
    11. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    12. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    13. Song, Chenhui & Xiao, Jun & Zu, Guoqiang & Hao, Ziyuan & Zhang, Xinsong, 2021. "Security region of natural gas pipeline network system: Concept, method and application," Energy, Elsevier, vol. 217(C).
    14. Daniel de Wolf & Yves Smeers, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," Post-Print halshs-02396708, HAL.
    15. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
    16. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
    17. Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi, 2023. "Analytical sensitivity analysis of radial natural gas networks," Energy, Elsevier, vol. 263(PC).
    18. R. Navarro & H. Rojas & Izabelly S. De Oliveira & J. E. Luyo & Y. P. Molina, 2022. "Optimization Model for the Integration of the Electric System and Gas Network: Peruvian Case," Energies, MDPI, vol. 15(10), pages 1-32, May.
    19. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    20. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3641-:d:816736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.