IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v180y2016icp1-13.html
   My bibliography  Save this article

Optimal day-ahead scheduling of integrated urban energy systems

Author

Listed:
  • Jin, Xiaolong
  • Mu, Yunfei
  • Jia, Hongjie
  • Wu, Jianzhong
  • Xu, Xiandong
  • Yu, Xiaodan

Abstract

An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.

Suggested Citation

  • Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
  • Handle: RePEc:eee:appene:v:180:y:2016:i:c:p:1-13
    DOI: 10.1016/j.apenergy.2016.07.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Ruifeng & Yu, Yunsong & Zhang, Zaoxiao, 2014. "Simultaneous optimization of integrated heat, mass and pressure exchange network using exergoeconomic method," Applied Energy, Elsevier, vol. 136(C), pages 1098-1109.
    2. Kaikko, Juha & Backman, Jari, 2007. "Technical and economic performance analysis for a microturbine in combined heat and power generation," Energy, Elsevier, vol. 32(4), pages 378-387.
    3. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimization framework for distributed energy systems with integrated electrical grid constraints," Applied Energy, Elsevier, vol. 171(C), pages 296-313.
    4. Zeng, Zheng & Zhao, Rongxiang & Yang, Huan & Tang, Shengqing, 2014. "Policies and demonstrations of micro-grids in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 701-718.
    5. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & Dang, Shuping & Zhang, Jian & Zhou, Yuhui, 2016. "A source–grid–load coordinated power planning model considering the integration of wind power generation," Applied Energy, Elsevier, vol. 168(C), pages 13-24.
    6. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    7. Xu, Xiandong & Jia, Hongjie & Wang, Dan & Yu, David C. & Chiang, Hsiao-Dong, 2015. "Hierarchical energy management system for multi-source multi-product microgrids," Renewable Energy, Elsevier, vol. 78(C), pages 621-630.
    8. Hawkes, A.D. & Leach, M.A., 2008. "On policy instruments for support of micro combined heat and power," Energy Policy, Elsevier, vol. 36(8), pages 2963-2972, August.
    9. Mendes, Gonçalo & Ioakimidis, Christos & Ferrão, Paulo, 2011. "On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4836-4854.
    10. Xu, Xiandong & Jin, Xiaolong & Jia, Hongjie & Yu, Xiaodan & Li, Kang, 2015. "Hierarchical management for integrated community energy systems," Applied Energy, Elsevier, vol. 160(C), pages 231-243.
    11. Meng, Jian & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qu, Bo, 2016. "Dynamic frequency response from electric vehicles considering travelling behavior in the Great Britain power system," Applied Energy, Elsevier, vol. 162(C), pages 966-979.
    12. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    13. Qadrdan, Meysam & Chaudry, Modassar & Wu, Jianzhong & Jenkins, Nick & Ekanayake, Janaka, 2010. "Impact of a large penetration of wind generation on the GB gas network," Energy Policy, Elsevier, vol. 38(10), pages 5684-5695, October.
    14. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    15. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Zhu, Xuan & Han, Xiao-qing & Qin, Wen-ping & Wang, Peng, 2015. "Past, today and future development of micro-grids in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1453-1463.
    17. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    18. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Wei & Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Xu, Xiandong & Yu, Xiaodan & Zhao, Bo, 2018. "A two-stage multi-objective scheduling method for integrated community energy system," Applied Energy, Elsevier, vol. 216(C), pages 428-441.
    2. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    3. Lei, Yunkai & Hou, Kai & Wang, Yue & Jia, Hongjie & Zhang, Pei & Mu, Yunfei & Jin, Xiaolong & Sui, Bingyan, 2018. "A new reliability assessment approach for integrated energy systems: Using hierarchical decoupling optimization framework and impact-increment based state enumeration method," Applied Energy, Elsevier, vol. 210(C), pages 1237-1250.
    4. Bao, Minglei & Ding, Yi & Sang, Maosheng & Li, Daqing & Shao, Changzheng & Yan, Jinyue, 2020. "Modeling and evaluating nodal resilience of multi-energy systems under windstorms," Applied Energy, Elsevier, vol. 270(C).
    5. Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan & Sun, Yonghui & Zang, Haixiang, 2016. "Probabilistic available transfer capability calculation considering static security constraints and uncertainties of electricity–gas integrated energy systems," Applied Energy, Elsevier, vol. 167(C), pages 305-316.
    6. Lin, Wei & Jin, Xiaolong & Jia, Hongjie & Mu, Yunfei & Xu, Tao & Xu, Xiandong & Yu, Xiaodan, 2021. "Decentralized optimal scheduling for integrated community energy system via consensus-based alternating direction method of multipliers," Applied Energy, Elsevier, vol. 302(C).
    7. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Computing technical capacities in the European entry-exit gas market is NP-hard," Annals of Operations Research, Springer, vol. 295(1), pages 337-362, December.
    8. Olivier Massol, 2011. "A Cost Function for the Natural Gas Transmission Industry: Further Considerations," The Engineering Economist, Taylor & Francis Journals, vol. 56(2), pages 95-122.
    9. Beyza, Jesus & Ruiz-Paredes, Hector F. & Garcia-Paricio, Eduardo & Yusta, Jose M., 2020. "Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    11. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    12. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    13. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    14. Huang, Zishuo & Yu, Hang & Chu, Xiangyang & Peng, Zhenwei, 2017. "A goal programming based model system for community energy plan," Energy, Elsevier, vol. 134(C), pages 893-901.
    15. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    16. Conrado Borraz-Sánchez & Dag Haugland, 2013. "Optimization methods for pipeline transportation of natural gas with variable specific gravity and compressibility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 524-541, October.
    17. Zhou, Li & Liao, Zuwei & Wang, Jingdai & Jiang, Binbo & Yang, Yongrong & Du, Wenli, 2015. "Energy configuration and operation optimization of refinery fuel gas networks," Applied Energy, Elsevier, vol. 139(C), pages 365-375.
    18. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    19. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    20. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:180:y:2016:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.