IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2660-d549440.html
   My bibliography  Save this article

External Costs for Agriculture from Lignite Extraction from the Złoczew Deposit

Author

Listed:
  • Benedykt Pepliński

    (Department of Law and Enterprise Management in Agribusiness, Faculty of Economics, Poznan University of Life Sciences, 60-637 Poznan, Poland)

Abstract

In many circles, including in Poland, lignite is still viewed as a cheap source of energy, which is only possible if the external costs associated with mining and burning coal are not taken into account. In Poland, this is reflected in plans to open new Złoczew opencast lignite mines. In previous studies, the analysis of external costs has focused on the external costs of coal combustion and related pollutant emissions. This paper focuses on the extraction phase. The aim of the work here described was to estimate the external costs that agriculture may incur due to the formation of a depression funnel for the projected lignite mine in the Złoczew deposit. This paper discusses factors causing uncertainty in calculated estimates of external costs in agriculture, and characterizes the Bełchatów and Złoczew opencast mines. In the paper, a methodology for calculating external costs in livestock production is then proposed. In the next part of the study, the decrease in cereal and potato yields and in the number of cattle and pigs in the area of the cone of depression of the Bełchatów opencast mine, which has been in operation for 40 years, were estimated. The estimates obtained formed the basis for estimating external costs for the planned Złoczew lignite opencast. The analyses showed high external costs for plant production and much lower for animal production. The inclusion of the estimated external costs of 12.2 € × kWh −1 in the costs of electricity production will significantly worsen the profitability of launching this opencast. The paper discusses factors causing uncertainty in calculated estimates of external costs in agriculture, and characterizes the Bełchatów and Złoczew opencast mines. The discussion also shows that the level of losses incurred in crop production due to opencast coal mining is similar to the losses incurred in crop production in extremely dry years.

Suggested Citation

  • Benedykt Pepliński, 2021. "External Costs for Agriculture from Lignite Extraction from the Złoczew Deposit," Energies, MDPI, vol. 14(9), pages 1-27, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2660-:d:549440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayars, James E. & Shouse, Peter & Lesch, Scott M., 2009. "In situ use of groundwater by alfalfa," Agricultural Water Management, Elsevier, vol. 96(11), pages 1579-1586, November.
    2. Widera, Marek & Kasztelewicz, Zbigniew & Ptak, Miranda, 2016. "Lignite mining and electricity generation in Poland: The current state and future prospects," Energy Policy, Elsevier, vol. 92(C), pages 151-157.
    3. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2018. "Economics of renewable energy expansion and security of supply: A dynamic simulation of the German electricity market," Applied Energy, Elsevier, vol. 231(C), pages 1268-1284.
    4. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    5. Vojtěch, Máca & Jan, Melichar & Milan, Ščasný, 2012. "Internalization of External Costs of Energy Generation in Central and Eastern European Countries," MPRA Paper 57988, University Library of Munich, Germany.
    6. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    7. Karimov, Akmal Kh. & Šimůnek, Jirka & Hanjra, Munir A. & Avliyakulov, Mirzaolim & Forkutsa, Irina, 2014. "Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)," Agricultural Water Management, Elsevier, vol. 131(C), pages 57-69.
    8. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter," Agricultural Water Management, Elsevier, vol. 148(C), pages 177-188.
    9. Lingling Wang & Tsunemi Watanabe & Zhiwei Xu, 2015. "Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China," Energies, MDPI, vol. 8(2), pages 1-28, February.
    10. Robert Y. Redlinger & Per Dannemand Andersen & Poul Erik Morthorst, 2002. "Wind Energy Policy," Palgrave Macmillan Books, in: Wind Energy in the 21st Century, chapter 7, pages 169-214, Palgrave Macmillan.
    11. Hutmacher, R. B. & Ayars, J. E. & Vail, S. S. & Bravo, A. D. & Dettinger, D. & Schoneman, R. A., 1996. "Uptake of shallow groundwater by cotton: growth stage, groundwater salinity effects in column lysimeters," Agricultural Water Management, Elsevier, vol. 31(3), pages 205-223, October.
    12. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    13. Kahlown, M.A. & Ashraf, M. & Zia-ul-Haq, 2005. "Effect of shallow groundwater table on crop water requirements and crop yields," Agricultural Water Management, Elsevier, vol. 76(1), pages 24-35, July.
    14. Wu, Yao & Liu, Tingxi & Paredes, Paula & Duan, Limin & Pereira, Luis S., 2015. "Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise," Agricultural Water Management, Elsevier, vol. 152(C), pages 222-232.
    15. Papagiannis, A. & Roussos, D. & Menegaki, M. & Damigos, D., 2014. "Externalities from lignite mining-related dust emissions," Energy Policy, Elsevier, vol. 74(C), pages 414-424.
    16. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Guanhua, 2018. "Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and ta," Agricultural Water Management, Elsevier, vol. 199(C), pages 93-104.
    17. Robert Y. Redlinger & Per Dannemand Andersen & Poul Erik Morthorst, 2002. "Economics of Wind Energy," Palgrave Macmillan Books, in: Wind Energy in the 21st Century, chapter 4, pages 73-96, Palgrave Macmillan.
    18. Selim Karkour & Yuki Ichisugi & Amila Abeynayaka & Norihiro Itsubo, 2020. "External-Cost Estimation of Electricity Generation in G20 Countries: Case Study Using a Global Life-Cycle Impact-Assessment Method," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    19. Georgakellos, Dimitrios A., 2010. "Impact of a possible environmental externalities internalisation on energy prices: The case of the greenhouse gases from the Greek electricity sector," Energy Economics, Elsevier, vol. 32(1), pages 202-209, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    2. Benedykt Pepliński, 2023. "External Costs to Agriculture Associated with Further Open Pit Lignite Mining from the Bełchatów Deposit," Energies, MDPI, vol. 16(12), pages 1-20, June.
    3. Ghamarnia, Houshang & Khodaei, Erfan, 2016. "Evidence on shallow groundwater use by edible green vegetables such as Solanum pseudoca psicum, Ocimum basilicum and Lepidium sativum in a semi-arid climate condition," Agricultural Water Management, Elsevier, vol. 165(C), pages 198-210.
    4. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    5. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    6. Jintao Lu & Chong Zhang & Licheng Ren & Mengshang Liang & Wadim Strielkowski & Justas Streimikis, 2020. "Evolution of External Health Costs of Electricity Generation in the Baltic States," IJERPH, MDPI, vol. 17(15), pages 1-22, July.
    7. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    8. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
    10. Lai, Jianbin & Liu, Tiegang & Luo, Yi, 2022. "Evapotranspiration partitioning for winter wheat with shallow groundwater in the lower reach of the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 266(C).
    11. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    12. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi Saghdel, 2018. "External costs from fossil electricity generation: A review of the applied impact pathway approach," Energy & Environment, , vol. 29(5), pages 635-648, August.
    13. Xiong, Lvyang & Xu, Xu & Engel, Bernard & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2021. "Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale," Agricultural Water Management, Elsevier, vol. 247(C).
    14. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    16. Lema, Adrian & Ruby, Kristian, 2007. "Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy," Energy Policy, Elsevier, vol. 35(7), pages 3879-3890, July.
    17. Shouse, Peter J. & Ayars, James E. & Simunek, Jirí, 2011. "Simulating root water uptake from a shallow saline groundwater resource," Agricultural Water Management, Elsevier, vol. 98(5), pages 784-790, March.
    18. Xiaonan Wang & Licheng Wang & Jianping Chen & Shouting Zhang & Paolo Tarolli, 2020. "Assessment of the External Costs of Life Cycle of Coal: The Case Study of Southwestern China," Energies, MDPI, vol. 13(15), pages 1-26, August.
    19. Weisser, Daniel & Garcia, Raquel S., 2005. "Instantaneous wind energy penetration in isolated electricity grids: concepts and review," Renewable Energy, Elsevier, vol. 30(8), pages 1299-1308.
    20. Weisser, Daniel, 2004. "Power sector reform in small island developing states: what role for renewable energy technologies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 101-127, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2660-:d:549440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.