IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v148y2015icp177-188.html
   My bibliography  Save this article

Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter

Author

Listed:
  • Talebnejad, R.
  • Sepaskhah, A.R.

Abstract

Water scarcity and water salinity are major constrains for agricultural production in arid and semi-arid regions of Iran. Salt tolerant and high nutritious crop, quinoa, has been introduced all around the world. However, little documented investigations are presented about the effect of different saline groundwater depths and irrigation water salinities on plant growth, yield and water use of quinoa. Therefore, the aim of this study was to investigate the influence of saline groundwater depths, SGD (0.3, 0.55 and 0.80m) with salinity equivalent to irrigation water and irrigation water salinity, WS (10, 20, 30 and 40dSm−1) on growth and yield of quinoa and groundwater contribution to its water use in cylindrical lysimeters in greenhouse conditions. Results indicated that increasing in WS caused significant decrease in seed yield (SY) and shoot dry matter (SDM) and at all SGDs. However, root dry matter (RDM), harvest index (HI), protein content, 1000-seed weight (SW), number of panicle per plant (NP) and plant height (PH) are reduced by WS higher than 20dSm−1. Furthermore, at all WSs increasing in SGD resulted in significant increase in SY, SDM, RDM and ET. Results indicated that quinoa is able to extract water (groundwater contribution to evapotranspiration ratio, GWC/ET as 18 to 66%) from saline groundwater, even at no deficit irrigation conditions. Contour plot was developed to show the combined effect of WS and SGD on GWC/ET. It is indicated that non-saline groundwater depth lower than 1.62m could contribute to quinoa water use. In presence of saline groundwater (SGD as m), the salinity should be considered by the equation SGD=1.62−0.013WS.Yield-salinity functions indicated that maximum threshold ECe for SY (20.7dSm−1) occurred at 0.80m SGD and seed yield reduction coefficient (b) was on average, 7.7% per unit soil salinity increase. Also, increasing in SGD resulted in significant decrease in RDM reduction coefficient. Minimum RDM reduction coefficient was 5.5% per unit soil salinity increase. It showed that quinoa root is more tolerant to salinity than shoots.

Suggested Citation

  • Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter," Agricultural Water Management, Elsevier, vol. 148(C), pages 177-188.
  • Handle: RePEc:eee:agiwat:v:148:y:2015:i:c:p:177-188
    DOI: 10.1016/j.agwat.2014.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414003254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ragab, R. A. & Amer, Fathi, 1986. "Estimating water table contribution to the water supply of maize," Agricultural Water Management, Elsevier, vol. 11(3-4), pages 221-230, September.
    2. Razzaghi, Fatemeh & Plauborg, Finn & Jacobsen, Sven-Erik & Jensen, Christian Richardt & Andersen, Mathias Neumann, 2012. "Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa," Agricultural Water Management, Elsevier, vol. 109(C), pages 20-29.
    3. Ghamarnia, Houshang & Gholamian, Mohsen, 2013. "The effect of saline shallow ground and surface water under deficit irrigation on (Carthamus tinctorius L.) in semi arid condition," Agricultural Water Management, Elsevier, vol. 118(C), pages 29-37.
    4. Sepaskhah, A. R. & Kanooni, A. & Ghasemi, M. M., 2003. "Estimating water table contributions to corn and sorghum water use," Agricultural Water Management, Elsevier, vol. 58(1), pages 67-79, January.
    5. Soppe, R. W. O. & Ayars, J. E., 2003. "Characterizing ground water use by safflower using weighing lysimeters," Agricultural Water Management, Elsevier, vol. 60(1), pages 59-71, April.
    6. Hutmacher, R. B. & Ayars, J. E. & Vail, S. S. & Bravo, A. D. & Dettinger, D. & Schoneman, R. A., 1996. "Uptake of shallow groundwater by cotton: growth stage, groundwater salinity effects in column lysimeters," Agricultural Water Management, Elsevier, vol. 31(3), pages 205-223, October.
    7. Kahlown, M.A. & Ashraf, M. & Zia-ul-Haq, 2005. "Effect of shallow groundwater table on crop water requirements and crop yields," Agricultural Water Management, Elsevier, vol. 76(1), pages 24-35, July.
    8. Ghamarnia, Houshang & Jalili, Zahra, 2014. "Shallow saline groundwater use by Black cumin (Nigella sativa L.) in the presence of surface water in a semi-arid region," Agricultural Water Management, Elsevier, vol. 132(C), pages 89-100.
    9. Garcia, Magali & Raes, Dirk & Jacobsen, Sven-Erik, 2003. "Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands," Agricultural Water Management, Elsevier, vol. 60(2), pages 119-134, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    2. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    3. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Benedykt Pepliński, 2021. "External Costs for Agriculture from Lignite Extraction from the Złoczew Deposit," Energies, MDPI, vol. 14(9), pages 1-27, May.
    5. Zipper, Samuel C. & Soylu, Mehmet Evren & Kucharik, Christopher J. & Loheide II, Steven P., 2017. "Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model," Ecological Modelling, Elsevier, vol. 359(C), pages 201-219.
    6. Benedykt Pepliński, 2023. "External Costs to Agriculture Associated with Further Open Pit Lignite Mining from the Bełchatów Deposit," Energies, MDPI, vol. 16(12), pages 1-20, June.
    7. Ghamarnia, Houshang & Khodaei, Erfan, 2016. "Evidence on shallow groundwater use by edible green vegetables such as Solanum pseudoca psicum, Ocimum basilicum and Lepidium sativum in a semi-arid climate condition," Agricultural Water Management, Elsevier, vol. 165(C), pages 198-210.
    8. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    9. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
    11. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    12. Mohamed Elsayed Gabr & Amira Mahmoud El Shorbagy & Hamdy Badee Faheem, 2023. "Assessment of Stormwater Quality in the Context of Traffic Congestion: A Case Study in Egypt," Sustainability, MDPI, vol. 15(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    2. Ghamarnia, Houshang & Khodaei, Erfan, 2016. "Evidence on shallow groundwater use by edible green vegetables such as Solanum pseudoca psicum, Ocimum basilicum and Lepidium sativum in a semi-arid climate condition," Agricultural Water Management, Elsevier, vol. 165(C), pages 198-210.
    3. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    4. Heuvelmans, Griet, 2010. "Development and credibility assessment of a metamodel relating water table depth to agricultural production," Agricultural Water Management, Elsevier, vol. 97(11), pages 1731-1741, November.
    5. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    6. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    7. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Karimov, Akmal Kh. & Šimůnek, Jirka & Hanjra, Munir A. & Avliyakulov, Mirzaolim & Forkutsa, Irina, 2014. "Effects of the shallow water table on water use of winter wheat and ecosystem health: Implications for unlocking the potential of groundwater in the Fergana Valley (Central Asia)," Agricultural Water Management, Elsevier, vol. 131(C), pages 57-69.
    9. Benedykt Pepliński, 2021. "External Costs for Agriculture from Lignite Extraction from the Złoczew Deposit," Energies, MDPI, vol. 14(9), pages 1-27, May.
    10. Fazlullah Akhtar & Bernhard Tischbein & Usman Awan, 2013. "Optimizing Deficit Irrigation Scheduling Under Shallow Groundwater Conditions in Lower Reaches of Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3165-3178, June.
    11. Liu, Zhongyi & Chen, Hang & Huo, Zailin & Wang, Fengxin & Shock, Clinton C., 2016. "Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table," Agricultural Water Management, Elsevier, vol. 171(C), pages 131-141.
    12. Northey, J.E. & Christen, E.W. & Ayars, J.E. & Jankowski, J., 2006. "Occurrence and measurement of salinity stratification in shallow groundwater in the Murrumbidgee Irrigation Area, south-eastern Australia," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 23-40, March.
    13. Sepaskhah, A.R. & Karimi-Goghari, Sh., 2005. "Shallow groundwater contribution to pistachio water use," Agricultural Water Management, Elsevier, vol. 72(1), pages 69-80, March.
    14. Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Ghamarnia, Houshang & Gholamian, Mohsen, 2013. "The effect of saline shallow ground and surface water under deficit irrigation on (Carthamus tinctorius L.) in semi arid condition," Agricultural Water Management, Elsevier, vol. 118(C), pages 29-37.
    16. Ahmadi, Seyed Hamid & Solgi, Shahin & Sepaskhah, Ali Reza, 2019. "Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities," Agricultural Water Management, Elsevier, vol. 225(C).
    17. Benedykt Pepliński, 2023. "External Costs to Agriculture Associated with Further Open Pit Lignite Mining from the Bełchatów Deposit," Energies, MDPI, vol. 16(12), pages 1-20, June.
    18. Ghamarnia, Houshang & Jalili, Zahra, 2014. "Shallow saline groundwater use by Black cumin (Nigella sativa L.) in the presence of surface water in a semi-arid region," Agricultural Water Management, Elsevier, vol. 132(C), pages 89-100.
    19. Babajimopoulos, C. & Panoras, A. & Georgoussis, H. & Arampatzis, G. & Hatzigiannakis, E. & Papamichail, D., 2007. "Contribution to irrigation from shallow water table under field conditions," Agricultural Water Management, Elsevier, vol. 92(3), pages 205-210, September.
    20. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:148:y:2015:i:c:p:177-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.