IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7909-d687600.html
   My bibliography  Save this article

Evaluation of Home Energy Efficiency Improvements in a Hot Desert Climate in Northwestern Mexico: The Energy Saving vs. Money Saving Conflict

Author

Listed:
  • Edgar Valenzuela

    (Facultad de Ingenieria, Universidad Autónoma de Baja California Mexicali, Boulevard Benito Juarez y Calle de la Normal s/n, Col. Insurgentes Este, Mexicali 21280, Mexico)

  • Hector Campbell

    (Instituto de Ingeniería, Universidad Autonoma de Baja California, Boulevard Benito Juarez y Calle de la Normal s/n, Col. Insurgentes Este, Mexicali 21280, Mexico)

  • Gisela Montero

    (Instituto de Ingeniería, Universidad Autonoma de Baja California, Boulevard Benito Juarez y Calle de la Normal s/n, Col. Insurgentes Este, Mexicali 21280, Mexico)

  • Marcos A. Coronado

    (Instituto de Ingeniería, Universidad Autonoma de Baja California, Boulevard Benito Juarez y Calle de la Normal s/n, Col. Insurgentes Este, Mexicali 21280, Mexico)

  • Alejandro A. Lambert-Arista

    (Facultad de Ingenieria, Universidad Autónoma de Baja California Mexicali, Boulevard Benito Juarez y Calle de la Normal s/n, Col. Insurgentes Este, Mexicali 21280, Mexico)

  • Carlos Perez-Tello

    (Instituto de Ingeniería, Universidad Autonoma de Baja California, Boulevard Benito Juarez y Calle de la Normal s/n, Col. Insurgentes Este, Mexicali 21280, Mexico)

  • Víctor H. Ramos-Sanchez

    (Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, Mexico)

Abstract

Reducing household energy consumption is one of the most important strategies used to decrease fossil fuel consumption and greenhouse gases emissions, and to encourage renewable energy utilization. Most energy conservation strategies in the domestic sector are aimed at preferential loans, i.e., purchasing renewable electricity or to improve the efficiency of home appliances, such as air conditioning and lighting. However, despite the relative economic successes of these technologies, they have not had expected impacts in regard to energy consumption. In this work, the authors analyzed the consumption patterns of two equivalent households—one was adapted with improved thermal insulation and a 1.2 kW photovoltaic system to reduce consumption from the electrical grid. The results show that dwellings where no improvements were made registered lower electric energy consumption, due the fact that users were aware that no strategy had been implemented, and its consumption; hence, electricity payments depended solely on one’s attention over the electronic device operations. On the other hand, energy conservation strategies in households promotes confident and relaxed attitudes toward the use of energy, leading to lower energy billings, but a higher gross energy consumption.

Suggested Citation

  • Edgar Valenzuela & Hector Campbell & Gisela Montero & Marcos A. Coronado & Alejandro A. Lambert-Arista & Carlos Perez-Tello & Víctor H. Ramos-Sanchez, 2021. "Evaluation of Home Energy Efficiency Improvements in a Hot Desert Climate in Northwestern Mexico: The Energy Saving vs. Money Saving Conflict," Energies, MDPI, vol. 14(23), pages 1-9, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7909-:d:687600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalia Streimikiene & Vidas Lekavičius & Tomas Baležentis & Grigorios L. Kyriakopoulos & Josef Abrhám, 2020. "Climate Change Mitigation Policies Targeting Households and Addressing Energy Poverty in European Union," Energies, MDPI, vol. 13(13), pages 1-24, July.
    2. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    3. Boccard, Nicolas & Gautier, Axel, 2021. "Solar rebound: The unintended consequences of subsidies," Energy Economics, Elsevier, vol. 100(C).
    4. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    5. Pao, Hsiao-Tien & Chen, Haipeng (Allan) & Li, Yi-Ying, 2015. "Competitive dynamics of energy, environment, and economy in the U.S," Energy, Elsevier, vol. 89(C), pages 449-460.
    6. Erdal Aydin & Nils Kok & Dirk Brounen, 2017. "Energy efficiency and household behavior: the rebound effect in the residential sector," RAND Journal of Economics, RAND Corporation, vol. 48(3), pages 749-782, August.
    7. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    8. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    9. Kulmer, Veronika & Seebauer, Sebastian, 2019. "How robust are estimates of the rebound effect of energy efficiency improvements? A sensitivity analysis of consumer heterogeneity and elasticities," Energy Policy, Elsevier, vol. 132(C), pages 1-14.
    10. Havas, Lisa & Ballweg, Julie & Penna, Chris & Race, Digby, 2015. "Power to change: Analysis of household participation in a renewable energy and energy efficiency programme in Central Australia," Energy Policy, Elsevier, vol. 87(C), pages 325-333.
    11. Peter Newton & Denny Meyer, 2013. "Exploring the Attitudes-Action Gap in Household Resource Consumption: Does “Environmental Lifestyle” Segmentation Align with Consumer Behaviour?," Sustainability, MDPI, vol. 5(3), pages 1-23, March.
    12. Estiri, Hossein, 2015. "The indirect role of households in shaping US residential energy demand patterns," Energy Policy, Elsevier, vol. 86(C), pages 585-594.
    13. Al-mulali, Usama, 2016. "Exploring the bi-directional long run relationship between energy consumption and life quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 824-837.
    14. Paul C. Stern, 2020. "A reexamination on how behavioral interventions can promote household action to limit climate change," Nature Communications, Nature, vol. 11(1), pages 1-3, December.
    15. Kim, Jae D. & Trevena, William, 2021. "Measuring the rebound effect: A case study of residential photovoltaic systems in San Diego," Utilities Policy, Elsevier, vol. 69(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imran Hossain & Maria Fekete-Farkas & Md. Nekmahmud, 2022. "Purchase Behavior of Energy-Efficient Appliances Contribute to Sustainable Energy Consumption in Developing Country: Moral Norms Extension of the Theory of Planned Behavior," Energies, MDPI, vol. 15(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Jae D. & Trevena, William, 2021. "Measuring the rebound effect: A case study of residential photovoltaic systems in San Diego," Utilities Policy, Elsevier, vol. 69(C).
    2. Galvin, Ray & Dütschke, Elisabeth & Weiß, Julika, 2021. "A conceptual framework for understanding rebound effects with renewable electricity: A new challenge for decarbonizing the electricity sector," Renewable Energy, Elsevier, vol. 176(C), pages 423-432.
    3. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2022. "Photovoltaics and the solar rebound: Evidence for Germany," Ruhr Economic Papers 954, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    4. Fikru, Mahelet G. & Gautier, Luis, 2023. "Consumption and production of cleaner energy by prosumers," Energy Economics, Elsevier, vol. 124(C).
    5. Aydın, Erdal & Brounen, Dirk & Ergün, Ahmet, 2023. "The rebound effect of solar panel adoption: Evidence from Dutch households," Energy Economics, Elsevier, vol. 120(C).
    6. Ross C. Beppler & Daniel C. Matisoff & Matthew E. Oliver, 2023. "Electricity consumption changes following solar adoption: Testing for a solar rebound," Economic Inquiry, Western Economic Association International, vol. 61(1), pages 58-81, January.
    7. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    8. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2021. "Photovoltaics and the Solar Rebound: Evidence for Germany," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242356, Verein für Socialpolitik / German Economic Association.
    9. Qiu, Yueming (Lucy) & Wang, Yi David & Xing, Bo, 2021. "Grid impact of non-residential distributed solar energy and reduced air emissions: Empirical evidence from individual-consumer-level smart meter data," Applied Energy, Elsevier, vol. 290(C).
    10. Ouyang, Xiaoling & Yang, Yuchuan & Du, Kerui & Cheng, Zhenyu, 2022. "How does residential electricity consumption respond to electricity efficiency improvement? Evidence from 287 prefecture-level cities in China," Energy Policy, Elsevier, vol. 171(C).
    11. Atasoy, Ayse Tugba & Schmitz, Hendrik & Madlener, Reinhard, 2021. "Mechanisms for Rebound Effects of Solar Electricity Prosuming in Germany," FCN Working Papers 10/2021, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Jun 2023.
    12. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    13. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    14. Abajian, Alexander & Pretnar, Nick, 2023. "Subsidies for Close Substitutes: Evidence from Residential Solar Systems," MPRA Paper 118171, University Library of Munich, Germany.
    15. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    16. Boccard, Nicolas & Gautier, Axel, 2021. "Solar rebound: The unintended consequences of subsidies," Energy Economics, Elsevier, vol. 100(C).
    17. Sommerfeldt, Nelson & Lemoine, Ida & Madani, Hatef, 2022. "Hide and seek: The supply and demand of information for household solar photovoltaic investment," Energy Policy, Elsevier, vol. 161(C).
    18. Hediger, Cécile & Farsi, Mehdi & Weber, Sylvain, 2018. "Turn It Up and Open the Window: On the Rebound Effects in Residential Heating," Ecological Economics, Elsevier, vol. 149(C), pages 21-39.
    19. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    20. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7909-:d:687600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.