IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v86y2015icp585-594.html
   My bibliography  Save this article

The indirect role of households in shaping US residential energy demand patterns

Author

Listed:
  • Estiri, Hossein

Abstract

About a quarter of US energy demand is for domestic use. Yet an understanding of the processes, determinants, and consequences of household energy demand remains elusive. Conventional energy policy has overwhelmingly focused on improving energy efficiency of the buildings. This research applies a non-linear methodology and an interdisciplinary approach to household energy demand. Using data from the US residential sector (2009 Residential Energy Consumption Survey), this research performs Covariance Structure Analysis to isolate direct and indirect effects of household and housing characteristics on total annual domestic energy use. Outcomes uncover some of households' indirect effects on energy demand, which in this research mainly happen through household effects on building characteristics, highlighting the indirect role of household choices in shaping residential energy demand patterns. To maximize its efficiency in reducing energy demand and GHG emissions, this paper suggests that in addition to investing in energy efficient technologies, energy policy should incorporate indirect effects of household choices on the configuration of their future homes.

Suggested Citation

  • Estiri, Hossein, 2015. "The indirect role of households in shaping US residential energy demand patterns," Energy Policy, Elsevier, vol. 86(C), pages 585-594.
  • Handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:585-594
    DOI: 10.1016/j.enpol.2015.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515300525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lutzenhiser, Loren, 1992. "A cultural model of household energy consumption," Energy, Elsevier, vol. 17(1), pages 47-60.
    2. Dubin, Jeffrey A & McFadden, Daniel L, 1984. "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Econometrica, Econometric Society, vol. 52(2), pages 345-362, March.
    3. Kaza, Nikhil, 2010. "Understanding the spectrum of residential energy consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 38(11), pages 6574-6585, November.
    4. Bengt Kriström, 2008. "Residential Energy Demand," OECD Journal: General Papers, OECD Publishing, vol. 2008(2), pages 95-115.
    5. Kelly, S., 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model for England's residential sector," Cambridge Working Papers in Economics 1139, Faculty of Economics, University of Cambridge.
    6. Poyer, David A. & Henderson, Lenneal & Teotia, Arvind P. S., 1997. "Residential energy consumption across different population groups: comparative analysis for Latino and non-Latino households in USA," Energy Economics, Elsevier, vol. 19(4), pages 445-463, October.
    7. Muthen, Bengt, 1983. "Latent variable structural equation modeling with categorical data," Journal of Econometrics, Elsevier, vol. 22(1-2), pages 43-65.
    8. Dora L. Costa & Matthew E. Kahn, 2011. "Electricity Consumption and Durable Housing: Understanding Cohort Effects," American Economic Review, American Economic Association, vol. 101(3), pages 88-92, May.
    9. Baxter, Lester W. & Feldman, Stephen L. & Schinnar, Arie P. & Wirtshafter, Robert M., 1986. "An efficiency analysis of household energy use," Energy Economics, Elsevier, vol. 8(2), pages 62-73, April.
    10. William A V Clark & Youqin Huang, 2003. "The Life Course and Residential Mobility in British Housing Markets," Environment and Planning A, , vol. 35(2), pages 323-339, February.
    11. Erling Holden & Ingrid T. Norland, 2005. "Three Challenges for the Compact City as a Sustainable Urban Form: Household Consumption of Energy and Transport in Eight Residential Areas in the Greater Oslo Region," Urban Studies, Urban Studies Journal Limited, vol. 42(12), pages 2145-2166, November.
    12. Wilhite, Harold & Nakagami, Hidetoshi & Masuda, Takashi & Yamaga, Yukiko & Haneda, Hiroshi, 1996. "A cross-cultural analysis of household energy use behaviour in Japan and Norway," Energy Policy, Elsevier, vol. 24(9), pages 795-803, September.
    13. Cramer, James C. & Hackett, Bruce & Craig, Paul P. & Vine, Edward & Levine, Mark & Dietz, Thomas M. & Kowalczyk, Dan, 1984. "Structural-behavioral determinants of residential energy use: Summer electricity use in Davis," Energy, Elsevier, vol. 9(3), pages 207-216.
    14. Albert Chevan, 1971. "Family growth, household density, and moving," Demography, Springer;Population Association of America (PAA), vol. 8(4), pages 451-458, November.
    15. Poyer, David A. & Williams, Martin, 1993. "Residential energy demand: additional empirical evidence by minority household type," Energy Economics, Elsevier, vol. 15(2), pages 93-100, April.
    16. Larson, William & Liu, Feng & Yezer, Anthony, 2012. "Energy footprint of the city: Effects of urban land use and transportation policies," Journal of Urban Economics, Elsevier, vol. 72(2), pages 147-159.
    17. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
    18. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    19. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    20. Eric Hirst, 1980. "Review of Data Related to Energy Use in Residential and Commercial Buildings," Management Science, INFORMS, vol. 26(9), pages 857-870, September.
    21. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    22. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    23. Aune, Margrethe, 2007. "Energy comes home," Energy Policy, Elsevier, vol. 35(11), pages 5457-5465, November.
    24. Shimoda, Yoshiyuki & Asahi, Takahiro & Taniguchi, Ayako & Mizuno, Minoru, 2007. "Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model," Energy, Elsevier, vol. 32(9), pages 1617-1633.
    25. Long, James E., 1993. "An econometric analysis of residential expenditures on energy conservation and renewable energy sources," Energy Economics, Elsevier, vol. 15(4), pages 232-238, October.
    26. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Analytical comparison between electricity consumption and behavioral characteristics of Swedish households in rented apartments," Applied Energy, Elsevier, vol. 90(1), pages 182-188.
    27. Van Raaij, W. Fred & Verhallen, Theo M. M., 1983. "A behavioral model of residential energy use," Journal of Economic Psychology, Elsevier, vol. 3(1), pages 39-63.
    28. Hirst, Eric & Goeltz, Richard & Carney, Janet, 1982. "Residential energy use : Analysis of disaggregate data," Energy Economics, Elsevier, vol. 4(2), pages 74-82, April.
    29. Ironmonger, D S & Aitken, C K & Erbas, B, 1995. "Economies of scale in energy use in adult-only households," Energy Economics, Elsevier, vol. 17(4), pages 301-310, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    2. Belaïd, Fateh & Joumni, Haitham, 2020. "Behavioral attitudes towards energy saving: Empirical evidence from France," Energy Policy, Elsevier, vol. 140(C).
    3. Dorothée Charlier & Bérangère Legendre, 2020. "Carbon Dioxide Emissions and aging: Disentangling behavior from energy efficiency," Working Papers 2020.13, FAERE - French Association of Environmental and Resource Economists.
    4. Stefan Pauliuk & Tomer Fishman & Niko Heeren & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Linking service provision to material cycles: A new framework for studying the resource efficiency–climate change (RECC) nexus," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 260-273, April.
    5. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    6. Edgar Valenzuela & Hector Campbell & Gisela Montero & Marcos A. Coronado & Alejandro A. Lambert-Arista & Carlos Perez-Tello & Víctor H. Ramos-Sanchez, 2021. "Evaluation of Home Energy Efficiency Improvements in a Hot Desert Climate in Northwestern Mexico: The Energy Saving vs. Money Saving Conflict," Energies, MDPI, vol. 14(23), pages 1-9, November.
    7. Anders Rhiger Hansen & Daniel Leiria & Hicham Johra & Anna Marszal-Pomianowska, 2022. "Who Produces the Peaks? Household Variation in Peak Energy Demand for Space Heating and Domestic Hot Water," Energies, MDPI, vol. 15(24), pages 1-23, December.
    8. Gholipour, Hassan F. & Arjomandi, Amir & Yam, Sharon, 2022. "Green property finance and CO2 emissions in the building industry," Global Finance Journal, Elsevier, vol. 51(C).
    9. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.
    10. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    11. Hu, Changshuai & Du, Dan & Huang, Junbing, 2023. "The driving effect of energy demand evolution: From the perspective of heterogeneity in technology," Energy, Elsevier, vol. 275(C).
    12. Linlin Zhao & Zhansheng Liu & Jasper Mbachu, 2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand," Energies, MDPI, vol. 12(15), pages 1-24, July.
    13. Pingxing Li & Wei Sun, 2018. "Temporal Evolution and Influencing Factors of Energy Consumption and Related Carbon Emissions from the Perspective of Industrialization and Urbanization in Shanghai, China," Sustainability, MDPI, vol. 10(9), pages 1-13, August.
    14. Guo, Ji & Xu, Yuanjing & Qu, Yao & Wang, Yiting & Wu, Xianhua, 2023. "Exploring factors affecting household energy consumption in the internet era: Empirical evidence from Chinese households," Energy Policy, Elsevier, vol. 183(C).
    15. Dorothée Charlier & Bérangère Legendre, 2021. "Carbon Dioxide Emissions and Aging: Disentangling Behavior from Energy Efficiency," Post-Print hal-03877220, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    2. Estiri, Hossein & Zagheni, Emilio, 2018. "Evaluating the Age-Energy Consumption Profile in Residential Buildings," SocArXiv yqkva, Center for Open Science.
    3. Belaïd, Fateh, 2017. "Untangling the complexity of the direct and indirect determinants of the residential energy consumption in France: Quantitative analysis using a structural equation modeling approach," Energy Policy, Elsevier, vol. 110(C), pages 246-256.
    4. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    5. Valenzuela, Carlos & Valencia, Alelhie & White, Steve & Jordan, Jeffrey A. & Cano, Stephanie & Keating, Jerome & Nagorski, John & Potter, Lloyd B., 2014. "An analysis of monthly household energy consumption among single-family residences in Texas, 2010," Energy Policy, Elsevier, vol. 69(C), pages 263-272.
    6. Estiri, Hossein, 2014. "Energy Planning in the Big Data Era: A Theme Study of the Residential Sector," EconStor Conference Papers 106936, ZBW - Leibniz Information Centre for Economics.
    7. Belaïd, Fateh, 2016. "Understanding the spectrum of domestic energy consumption: Empirical evidence from France," Energy Policy, Elsevier, vol. 92(C), pages 220-233.
    8. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    9. Sanquist, Thomas F. & Orr, Heather & Shui, Bin & Bittner, Alvah C., 2012. "Lifestyle factors in U.S. residential electricity consumption," Energy Policy, Elsevier, vol. 42(C), pages 354-364.
    10. Belaïd, Fateh & Garcia, Thomas, 2016. "Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data," Energy Economics, Elsevier, vol. 57(C), pages 204-214.
    11. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    12. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    13. Gholipour, Hassan F. & Arjomandi, Amir & Yam, Sharon, 2022. "Green property finance and CO2 emissions in the building industry," Global Finance Journal, Elsevier, vol. 51(C).
    14. Rafael de Arce & Ramón Mahía, 2019. "Drivers of Electricity Poverty in Spanish Dwellings: A Quantile Regression Approach," Energies, MDPI, vol. 12(11), pages 1-18, May.
    15. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    16. Sardianou, Eleni, 2007. "Estimating energy conservation patterns of Greek households," Energy Policy, Elsevier, vol. 35(7), pages 3778-3791, July.
    17. Hamed Nabizadeh Rafsanjani & Changbum R. Ahn & Mahmoud Alahmad, 2015. "A Review of Approaches for Sensing, Understanding, and Improving Occupancy-Related Energy-Use Behaviors in Commercial Buildings," Energies, MDPI, vol. 8(10), pages 1-34, October.
    18. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    19. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    20. Laurie Buys & Desley Vine & Gerard Ledwich & John Bell & Kerrie Mengersen & Peter Morris & Jim Lewis, 2015. "A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:86:y:2015:i:c:p:585-594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.